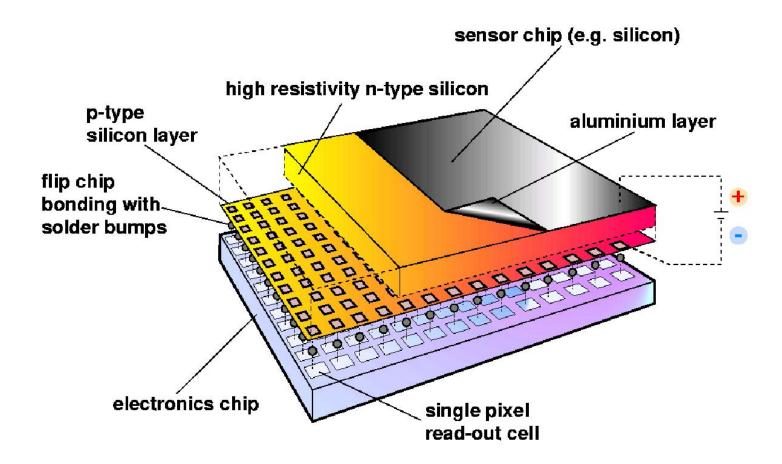


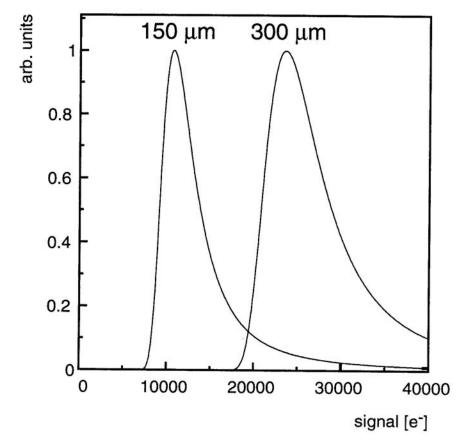
Bump Bonding for Pixel Detectors

M. Campbell EP Division CERN



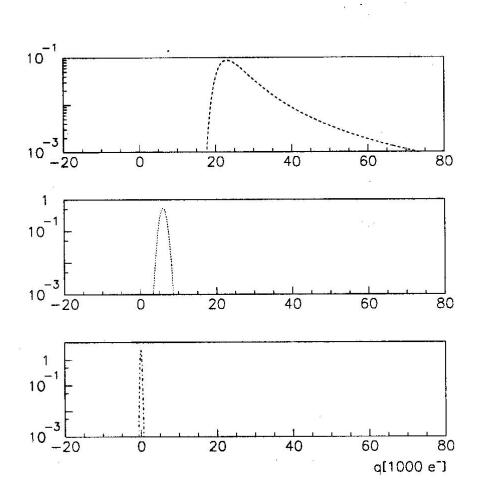
Outline

- Introduction
- Applications in High Energy Physics
- Applications to X-ray Imaging
- Common Requirements
- Specific Requirements
- Accessible Companies and Technologies
- Comparison of Technologies
- Remaining Challenges for LHC
- Beyond LHC


Hybrid Pixel Detector

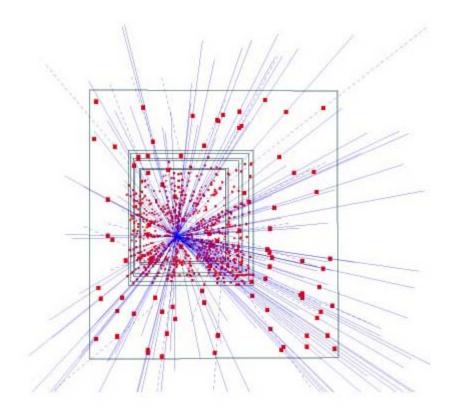
Workshop on Bonding and Die Attach Technologies 11-12 June 2003

Landau distribution in Si detector



Because of charge sharing threshold normally set around 1/3rd Landau peak

Workshop on Bonding and Die Attach Technologies 11-12 June 2003


Signal, Threshold, Noise

Workshop on Bonding and Die Attach Technologies 11-12 June 2003

CERN Experiment WA97 (1995)

5 x 5 cm² area 7 detector planes Pixel dimensions 75 x 500 μm² Trigger precision 1 μsec 1 kHz trigger rate

NB. Dead area ~3% in total over 7 x 5 x 5 cm²

Outline

- Introduction
- Applications in High Energy Physics
- Applications to X-ray Imaging
- Common Requirements
- Specific Requirements
- Accessible Companies and Technologies
- Comparison of Technologies
- Remaining Challenges for LHC
- Beyond LHC

Alice pixel detector

• 2 barrel layers

- p⁺ on n detectors
- pixel dimensions 50 μm x 425 μm
- chip contains 256 x 32 pixels
- 1 x 5 chips/module
- ~ 240 modules
- ~ 2 million channels in total

see talk of Petra Riedler

Atlas pixel detector

- 3 barrel layers and 3 disk layers
- n⁺ on n detectors with p spray isolation
- pixel dimensions 50 μm x 400 μm
- chip contains 160 x 18 pixels
- 2 x 8 chips/module
- ~ 1 500 modules
- ~ 100 million channels in total

BTeV pixel detector

- 31 station 10 cm x 10 cm
- n⁺ on n detectors with p-stop or p-spray
- pixel dimensions 50 μm x 400 μm
- chip contains 128 x 22 pixels (tentative)
- 1 x (4 to 8) chips/module
- ~ 30 million channels in total

CMS pixel detector

- 3 barrel layers and 2 disk layers
- n⁺ on n detectors with dual concentric broken p-stop rings
- pixel dimensions 150 μm x 150 μm
- chip contains 52 x 53 pixels
- 2 x 8 chips/module
 - ~ 752 modules
- ~ 33 million channels in total in barrel

see talks of Alan Honma and Christian Brönnimann

Workshop on Bonding and Die Attach Technologies 11-12 June 2003

- Chip/detector assembly inside Hybrid Photon Detector (under vacuum)
- single photo-electron detection required (5000 e-)
- p⁺ on n detectors
- pixel dimensions 500 μm x 500 μm
- chip contains 32 x 32 super-pixels (each super pixel contains 8 sub pixels)
- ~ 1000 tubes needed
- ~ 1 million channels in total
 See talk by Thierry Gys

Workshop on Bonding and Die Attach Technologies 11-12 June 2003

Outline

- Introduction
- Applications in High Energy Physics
- Applications to X-ray Imaging
- Common Requirements
- Specific Requirements
- Accessible Companies and Technologies
- Comparison of Technologies
- Remaining Challenges for LHC
- Beyond LHC

Synchrotron Applications

PILATUS (SLS)

- 44 x 78 pixels, 217µm pitch
- 2 x 8 chip ladders see talk by Christian Brönniman

ALADIN (RAL)

- 64 x 64 pixels, 150μm pitch
- 1 x 7 chip ladders

XPAD (Marseilles)

- 24 x 25 pixels, 330µm pitch
- 2 x 5 chip ladders

Medical Imaging Applications

- Integrating systems
 - Nova R&D Mary chip
 - 192 x 384 pixels, 50µm pitch
 - AJAT DIC100
 - Xx x yy pixels, 100 μ m pitch
- Photon counting systems
 - MPEC2.3 (Bonn) 32 x 32 pixels, 200μm pitch
 - Medipix2 256 x 256 pixels, 55μm pitch

Common Requirements

- Pitch ~ 50μm
- Chips > 1 cm²
- 1 000 100 000 bumps/chip
- Large area coverage -> multi-chip ladders (5-16 chips per ladder)
- Dead area between ladders should be limited
- Deep sub-micron CMOS (8" wafers)

Application Specific Requirements

♦ <u>HEP</u>

Low mass assembly Thin Si detectors and (post bumping thinned CMOS) Pitch limited by material budget – going < 50µm makes no sense in present systems

- For Photo Multiplier Tube Encapsulation
 Vacuum compatible technology
 High temperature cycling
- <u>X-ray imaging</u>
 High ρ (exotic!) material

Accessible Companies and Technologies

<u>Company</u>	Technology	Experiment
AMS	In (cold)	Atlas/Alice
IZM	SnPb (eutectic)	Altas
MCNC	SbPb (eutectic)	BTeV
PSI	In (reflow)	CMS
VTT	SnPb (eutectic) SnPb (high Pb)	Alice/NA60 LHCb RICH

Workshop on Bonding and Die Attach Technologies 11-12 June 2003

Comparison of Used Technologies

Technology	Pull Strength (g/bump)	<u>Max Temp</u> (°C)
In (cold)	0.1	100
In (reflow)	0.2-0.3	250
SnPb (eutectic)	1	230
SnPb (reflow)	??	380
	••	000

- Missing corners poor co-planarity during alignment / reflow
- Low pull strength poor UBM adhesion / poor wetting (in reflow processes)
- Local shorts between pixels too much compression / movement during reflow
- High detector leakage currents incomplete field layer etching / poor dicing

Remaining challenges for the LHC

- Selection and burn-in of KGD
- Total quantities (~ 40 000 installed placements needed!)
- QA during production and feedback to suppliers
- Lifetime testing of bumps
- Handling of large numbers of extremely thin and (sometimes) fragile components
- Rework

A controversial question:

Will bump bonding problems sign the death warrant for hybrid pixel detectors in HEP ?

Depends on how we do for LHC....

Cost

Ultimately, hybrid pixels provide unbeaten pattern recognition.

Workshop on Bonding and Die Attach Technologies 11-12 June 2003

Beyond LHC1

- Solutions for single chip tiling
- Thinner assemblies
- Inter-layer interconnect
- True vertex finding...
- X-ray imaging community may become a large user too (depends on developments..)