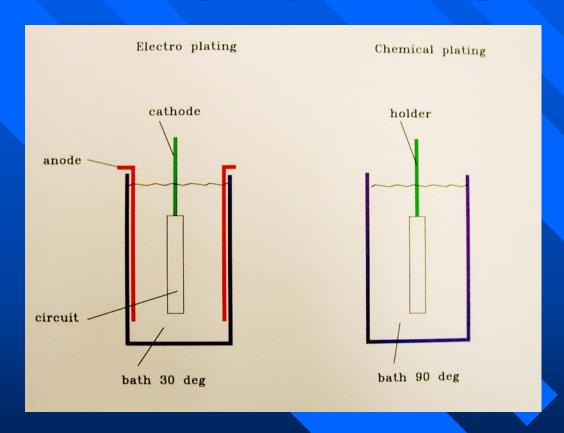
Metalurgies for wire bonding Ulrasonic ,Thermosonic and Thermocompression

- -Plating processes
- -Gold based metalurgies
- -Aluminium based metalurgies
- -Other metals
- -Other interconnection techniques
- -Long term reliability
- -Examples

Plating processes


Electro & Chemical plating

Vacuum plating

Thick film plating

Layout/patterns

Electro-plating/Chemical -plating

Electro plating

- -Plate only on metals
- -Metal in salts or directly the electrodes
- -Metals thickness depends on time/temp/current

Chemical plating

- -Plate only catalysed metals
- -Metal in salts
- -Deposition by immersion or autocatalytic
- -thickness is not fully temperature and time dependent

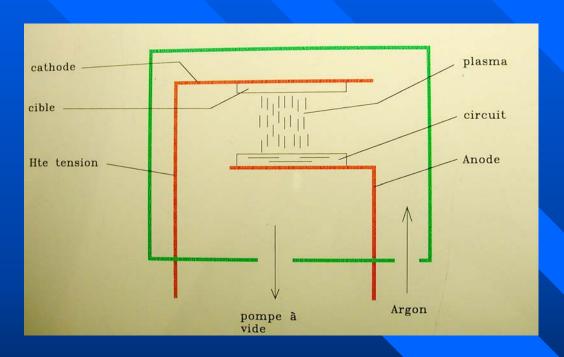
Electroplating bath

Gold bath (electro plating) Ni, Au, Cu, Pd, Ag

The bath can be re-used by replenisching with salts or changing the anodes Rayon X

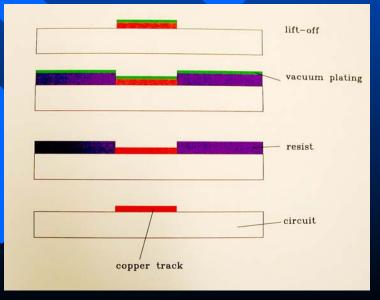
Anode Cathode

Chemical plating bath



Gold bath (chemical plating)

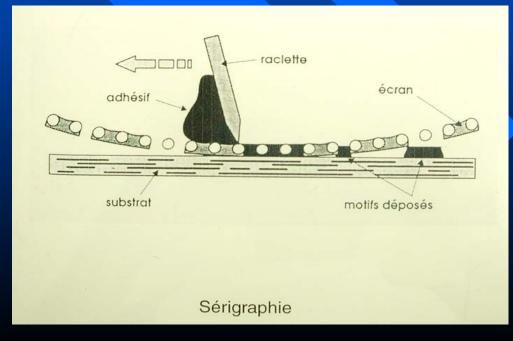
Ni, Au, Pd, Cu


You can deposit around 6 to 10 times the metal present in one bath The bath start to be instable after that.

Vacuum plating

- -Amorphous deposition
- -Metals deposited :Ni,Cu,Al,Au,TI,Pd etc
- -Ductility depends on Argon pressure

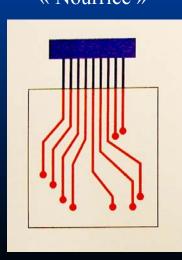
Lift-off


Screen printing plating 1/2

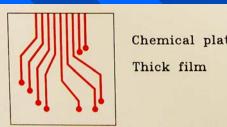
Screen printing machine

Screen: stainless steel mesch

Screen printing plating 2/2

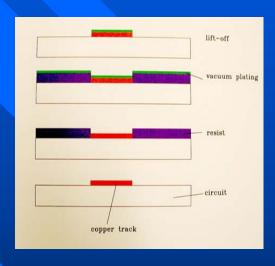


Firing :belt oven


Metals: Thick Au, Ag, PtAu, PdAu
Special Gold alloys for reduced Kirkendall effects

seed layer resist plating stripping etching

Seed layer Electro plating « Nourrice »



Layouts/Patterns

Chemical plating

Direct plate or print Chemical plating Thick film

Lift-off or etching

Gold based platings 1/2

Туре	Thicknesses (um)	Plating type
Ni/Au	5/0.05-0.1	chemical
Ni/Pd/Au	5/0.3/0.05-0.1	chemical
Ni/ Thick Au	5/1	chemical/electro
Au Cobalt	3	electro
Chemical Au	0.05-0.1	chemical
Electro Au	1.5-2	electro
Ni/Au Vacuum	2/1	sputtering
Au thick film	8-15	Screen printing

Gold based platings 2/2

Plating	Al bonding	Au bonding	contact	Press fit	Solder
Ni/Au	OK	NO	NO	OK	OK
Ni/Pd/Au	OK	OK	NO	OK	OK
Ni/Thick Au	OK	OK	NO	OK	OK*
Au cobalt	NO	NO	OK	OK	NO
Chemical Au	NO	NO	NO	NO	OK
Electro Au	OK/NO	OK/NO	NO	NO	OK*
Ni/Au vacuum	OK	ОК	NO	NO	OK*
Au thick film	OK	OK	NO	NO	NO

^{*} Ok but not recomanded

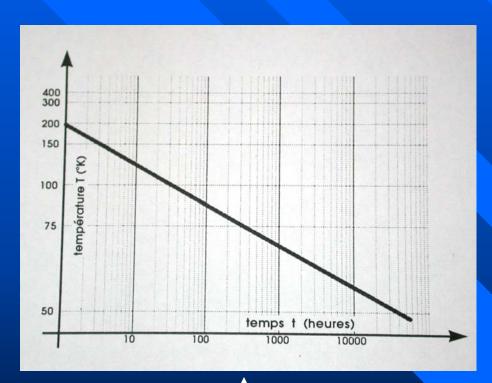
Aluminium based platings

Aluminium type	Thicknesses (um)	Wedge Al	Ball Au
Sheet 99.9 %	15-50	OK	OK
Vacuum evaporation	1.5-2 mini	OK/NO	OK/NO
Vacuum sputtering	1.5-2mini	OK*	OK*
Al/Si sputtering (1-2%)	1.5-2mini	OK*	OK*
Al/Cu sputtering(1-3%)		OK*	OK*

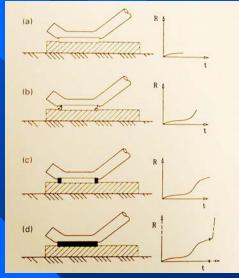
^{*} Depend on the parameters during the process

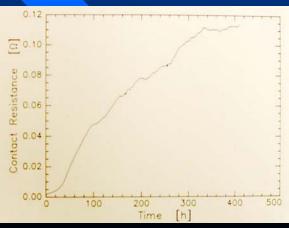
Other metals

- -Cu \rightarrow bondable but not reliable
- -Ag \rightarrow bondable but not reliable
- -Cr \rightarrow difficult to bond due to passivation
- -Pt Au → bondable but not as good as Gold
- -Pd or Ni/Pd → Seem to be as good as Gold but not very used (chemical & electro)


Other interconnections techniques with similar processes as wire bonding

- -TAB (tape automated bonding)


 Thermocompression Au/Au or Au/Sn
- -Bump bonding
 Thermocompression Au/Au (C4 or ball bumps)
- -SMD component bonding
 Ultrasonic SnPb/SnPb


Long term reliability 1/3

Kierkendall effect (Al to Au bond)

Kirkendall voids evolution

Curve X=cte

$$x = \sqrt{t \cdot k_0 \cdot e^{\frac{-E}{K \cdot T}}}$$

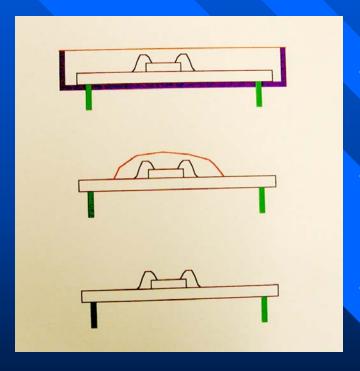
X=thickness of AuAl2

t= Time

T=Temperature

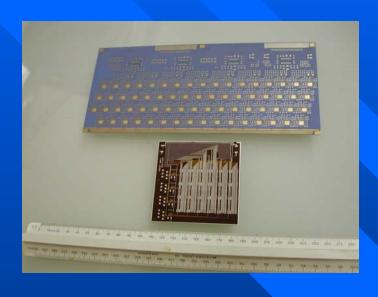
K=Boltzmann constant

Long term reliability 2/3

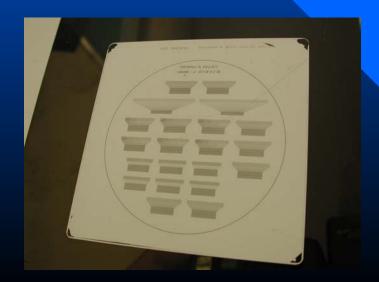

Kirkendall voids observed in 2 cases:

-Aluminium bonding on thick gold pads (1 to 15um) Not on immersion gold (0.05um)

-Gold bonding on Aluminium pads


No information on intermetallics with Pt/Au or Pd

Long term reliability 3/3



- Sealed package withNitrogen without humidity
- Glass epoxy Glob-top, silicon gel, Polyimide glob-top.
 - Sensitive to CTE mismatch
- No protection, need a controlled atmosphere and no humidity

Examples

