Wire Bonding Quality Assurance and Testing Methods

Visual and mechanical testing methods of wire bonds

- Light- and scanning electron microscopical examinations
- Pull test
- Shear test

\[F = F_1 = F_2 \quad \text{bei } \beta_1 = \beta_2 = 30^\circ \]

Dr.-Ing. M. Schneider-Ramelow phone: +49 30 / 46 40 3-172, fax: -162
martin.schneiderramelow@izm.fraunhofer.de
Fraunhofer-Institut für Zuverlässigkeit und Mikrointegration (IZM)
Gustav-Meyer-Allee 25, D-13355 Berlin
Wire Bonding Quality Assurance and Testing Methods

Wire bonding and quality assurance: General requirements

Global formulation:
• low cost technology
• easy to realize and flexible during application
• strong mechanical stability
• thermal stability (in regard to further processing steps) and
• good long term stability
• low contact resistance
• as much as possible great welding area between wire and metallization
• no physical and chemical interactions with other materials

Test methods:
• visual inspektion MIL-STD 883 method 2010, 2017
• pull test MIL-STD 883 methode 2011 (destructive), methode 2023 (non destructive)
• shear test ASTM F 1269-89
Wire Bonding Quality Assurance and Testing Methods

Bond pads on chip:
- Multiple imprints of test probes or deep very imprints
- Strong adverse effects of surface quality
- Influence on bondability
Remark: Visual inspection of bondpads **before** wire bonding!
Wire Bonding Quality Assurance and Testing Methods

Ball and wedge bond lift offs of wafer metallizations while TS-Au-B/W-Bonding

Wafer metallization lift offs while TS-Au-W/W-Bonding
Wire Bonding Quality Assurance and Testing Methods

SEM-View (BSE): PCB metallization lift off and undersurface of a lift off bond (wedge)
Wire Bonding Quality Assurance and Testing Methods

Quality Tests (Visual Methods)

Ball Bond
- Loop high
- Loop length
- Loop size and sweeping
- Influence to neck and heel

Wedge Bond
- Loop high
- Loop length
- Horizontal and vertical deformation
- Position of bonds on the pad

Geometrical Parameters during Wire Bond

SEM – Figure of a typical Ball Bond

SEM – Figure of a typical Wedge Bond
Wire Bonding Quality Assurance and Testing Methods

Ball bond failures
Wire Bonding Quality Assurance and Testing Methods

Visual inspection of wire bonds
Wire Bonding Quality Assurance and Testing Methods

Visual inspection of wire bonds
Wire Bonding Quality Assurance and Testing Methods

Wedges on chip

- strong squeezing out of chip metallization while bonding
- possible evidence of a too soften surface metallization
Wire Bonding Quality Assurance and Testing Methods

<table>
<thead>
<tr>
<th>Wire Diameter</th>
<th>Standard</th>
<th>Cutting Edge</th>
</tr>
</thead>
<tbody>
<tr>
<td>A pad width</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>B pad length</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>D wire diameter</td>
<td>P</td>
<td>W</td>
</tr>
<tr>
<td>W bond width</td>
<td>P</td>
<td>W</td>
</tr>
</tbody>
</table>

Wire Bonding Measurements

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Mil</td>
<td>100µm</td>
<td>125µm</td>
<td>125µm</td>
<td>45µm</td>
<td>.004in</td>
<td>.005in</td>
<td>.005in</td>
<td>.0018in</td>
</tr>
<tr>
<td>2 Mil</td>
<td>125µm</td>
<td>150µm</td>
<td>200µm</td>
<td>75µm</td>
<td>.005in</td>
<td>.006in</td>
<td>.008in</td>
<td>.003in</td>
</tr>
<tr>
<td>3 Mil</td>
<td>180µm</td>
<td>200µm</td>
<td>250µm</td>
<td>125µm</td>
<td>.0072in</td>
<td>.008in</td>
<td>.01in</td>
<td>.005in</td>
</tr>
<tr>
<td>4 Mil</td>
<td>200µm</td>
<td>280µm</td>
<td>280µm</td>
<td>130µm</td>
<td>.008in</td>
<td>.0112in</td>
<td>.0112in</td>
<td>.0052in</td>
</tr>
</tbody>
</table>

Heavy Wire

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5 Mil</td>
<td>250µm</td>
<td>300µm</td>
<td>350µm</td>
<td>150µm</td>
<td>.01in</td>
<td>.012</td>
<td>.014in</td>
<td>.006in</td>
</tr>
<tr>
<td>6 Mil</td>
<td>250µm</td>
<td>500µm</td>
<td>400µm</td>
<td>200µm</td>
<td>.01in</td>
<td>.02in</td>
<td>.016in</td>
<td>.008in</td>
</tr>
<tr>
<td>10 Mil</td>
<td>400µm</td>
<td>800µm</td>
<td>600µm</td>
<td>320µm</td>
<td>.016in</td>
<td>.032in</td>
<td>.024in</td>
<td>.0128in</td>
</tr>
<tr>
<td>20 Mil</td>
<td>800µm</td>
<td>1300µm 150µm</td>
<td>650µm</td>
<td>650µm</td>
<td>.032in</td>
<td>.052in</td>
<td>.046in</td>
<td>.026in</td>
</tr>
</tbody>
</table>
Overbonded wedges (too much deformation), right: Detail
Wire Bonding Quality Assurance and Testing Methods

Results of a tilted glued or soldered chip on bonding process:

- Surfaces of chip pads aren’t horizontal
- Bonding tool is touched down tilted, too
- Wedge is deformed non-uniform
- Pad metallization or chip could be damaged
Wire Bonding Quality Assurance and Testing Methods

Optical inspection of die tilting

IZM: Hillmann, Großer, Ghaharemani

sheet 16
Wire Bonding Quality Assurance and Testing Methods

Wire Sweep Definition

\[\text{Sweep \%} = \frac{\alpha}{L} \times 100\% \]
Wire Bonding Quality Assurance and Testing Methods

Mechanical bond contact inspection (tests)

<table>
<thead>
<tr>
<th>to proof:</th>
<th>selected tests:</th>
</tr>
</thead>
<tbody>
<tr>
<td>- mechanical stiffness of loops</td>
<td>- pull test</td>
</tr>
<tr>
<td>- ball bond strength</td>
<td>- shear test</td>
</tr>
<tr>
<td>- heavy wire wedge bond strength</td>
<td>- shear test</td>
</tr>
<tr>
<td>- simultaneous proofing of many bond contacts</td>
<td>- centrifugal test</td>
</tr>
<tr>
<td>- fatigue behaviour of loops</td>
<td>- vibration test</td>
</tr>
<tr>
<td>- crack initiation and growth</td>
<td>- mechanical shock test</td>
</tr>
<tr>
<td>- sweep off behaviour</td>
<td>- air jet test</td>
</tr>
</tbody>
</table>
Wire Bonding Quality Assurance and Testing Methods

Principle of pull test

\[F = F_1 = F_2 \quad \text{bei} \quad \beta_1 = \beta_2 = 30^\circ \]

Quelle: Dage Firmenschrift
Failure modes:
1, 5 Bond lift off from pad metallization (lift off)
2, 4 Wire break at bond (heelcrack or neck break when ball/wedge bonding)
3 wire break
Load/Force distribution while bond pull test

\[F_1 = F_2 = \frac{F}{2 \sin \Theta} = \frac{F}{2} \left[1 + \left(\frac{d}{2h} \right)^2 \right]^{1/2} \]

true for \(\Phi = 0 \), both bond contacts at one level and \(\Theta_1 = \Theta_2 = \Theta \)

load at chip:

\[F_1 = F \frac{\cos(\Theta_2 - \Phi)}{\sin(\Theta_1 + \Theta_2)} \]

load at substrate:

\[F_2 = F \frac{\cos(\Theta_1 + \Phi)}{\sin(\Theta_1 + \Theta_2)} \]
Wire Bonding Quality Assurance and Testing Methods

Quality criteria for pull testing

\[F = F_1 = F_2 \quad \text{if} \quad \beta_1 = \beta_2 = 30^\circ \]

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>laboratory</td>
</tr>
<tr>
<td>pull force</td>
<td>>50 %</td>
</tr>
<tr>
<td>- average value (based on nondeformed wire)</td>
<td><15 %</td>
</tr>
<tr>
<td>- standard deviation (based on average value)</td>
<td>0 %</td>
</tr>
<tr>
<td>- proportion of values < (based on standards) cN</td>
<td>0 %</td>
</tr>
<tr>
<td>lift offs</td>
<td>0 %</td>
</tr>
<tr>
<td>- pull lift off</td>
<td></td>
</tr>
<tr>
<td>- bond lift off</td>
<td></td>
</tr>
</tbody>
</table>
Wire Bonding Quality Assurance and Testing Methods

Minimum pull forces for destructive pull test (MIL STD 883, Methode 2011):

Wires:
1 Au (preseal)
2 Al (preseal)
 Au (postseal)
3 Al (postseal)
Wire Bonding Quality Assurance and Testing Methods

Pull Force

- increasing quantity of pull lift offs
- increasing quantity of heel cracks

optimum

increasing parameters
Wire Bonding Quality Assurance and Testing Methods

Principle of shear test

1. Substrate/Pad
2. Interface Ball/Substrate
3. Au-Ball
4. Shear Tool
5. Shear Level

$ F_s $ Shear Force
$ S $ Shear Height

Source: Dage and „DVS-Merkblatt Drahtbonden“
Wire Bonding Quality Assurance and Testing Methods

Standard report of pull test: Standard AlSi1 wire (30 µm)

<table>
<thead>
<tr>
<th>US power 1./2. bond [scale]</th>
<th>average value pull force [cN]</th>
<th>pull force < 6 cN [%]</th>
<th>pull lift offs [%]</th>
<th>bond lift offs [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>104/110</td>
<td>10,5</td>
<td>1,6</td>
<td>16,7</td>
<td>10,0</td>
</tr>
<tr>
<td>109/115</td>
<td>12,0</td>
<td>1,4</td>
<td>6,7</td>
<td>5,0</td>
</tr>
<tr>
<td>114/120</td>
<td>14,5</td>
<td>0,9</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>124/130</td>
<td>15,0</td>
<td>0,8</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>134/140</td>
<td>14,5</td>
<td>0,9</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>144/150</td>
<td>11,5</td>
<td>1,0</td>
<td>11,5</td>
<td>0,0</td>
</tr>
<tr>
<td>154/160</td>
<td>8,5</td>
<td>1,2</td>
<td>20,0</td>
<td>0,0</td>
</tr>
</tbody>
</table>

- **number of tests:** $n = 30$
- **US time:** 30 ms
- **bond force:** 32 cN
- **tensile wire strength:** 19 cN

US power 1./2. bond [scale]

Error rate

- **average pull force [cN]**
- **standard deviation [cN]**
- **pull force < 6 cN [%]**
- **pull lift offs [%]**
- **bond lift offs [%]**

Fraunhofer Institute for Reliability and Microintegration
Wire Bonding Quality Assurance and Testing Methods

Failure modes while shear test

- Ball lift off
- Metallization lift off
- Ball shear
- Metallization cracking
- Chip cratering
Wire Bonding Quality Assurance and Testing Methods

Quality criteria for ball shear testing (TS bonding)

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>laboratory</td>
</tr>
<tr>
<td>shear force</td>
<td></td>
</tr>
<tr>
<td>- average value (based on minimum shear force value)</td>
<td></td>
</tr>
<tr>
<td>- standard deviation (based on average value)</td>
<td></td>
</tr>
<tr>
<td>- minimum shear force (based on ball diameter after bonding)</td>
<td></td>
</tr>
</tbody>
</table>
| lift offs | | see beneath, no value < ...
| - bond lift off | 0 % | 0 % |
| - shear lift off | 0 % | 0 % |
| - percentage off Au on pad | > 80 % | > 50 % |

- no metallization lift off, no cratering

<table>
<thead>
<tr>
<th>Minimum shear value</th>
<th>ballbond diameter (µm)</th>
<th>shear force (cN)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>50</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>75</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>125</td>
<td>75</td>
</tr>
</tbody>
</table>
Wire Bonding Quality Assurance and Testing Methods

Heavy wire wedge shear testing

Heavy wire: 400 µm
Pitch: 750 µm

Pitch = W + S

Principle of shear test
Wire Bonding Quality Assurance and Testing Methods

Problems while evaluation of heavy wire shear test results

Partial shear lift off

Questions: Where is the limit between shear lift off and shear through the bond? What shear height should be chosen while shear testing?

Source: IZM Berlin
Wire Bonding Quality Assurance and Testing Methods

Load Cartridge Options:

1. **Wire Pull**
 - Maximum Pull Force
 - Cartridge 1: 100 g
 - Cartridge 2: 1 kg
 - Cartridge 3: 10 kg

2. **Tweezer Pull/Peel**
 - Maximum Pull Force
 - Cartridge 1: 100 g
 - Cartridge 2: 5 kg

3. **Ball Shear**
 - Maximum Shear Force
 - Cartridge 1: 250 g
 - Cartridge 2: 5 kg
 - Cartridge 3: 100 kg

4. **Shear**
 - Maximum Shear Force
 - Cartridge 2: 5 kg
 - Cartridge 3: 100 kg

Special Load Cartridges:
- High Force Tweezer Pull up to 10 kg
- Heated Bump Pull up to 10 kg
- Stud Pull
- Cold Bump Pull up to 5 kg

Fraunhofer Institut Zuverlässigkeit und Mikrointegration