SIMS MEASUREMENT of OXYGEN in FZ-SILICON

Adam Barcz $^1, 2$, Marcin Zielinski 1, Elisabeth Nossarzewska3, Gunnar Lindström4

1Institute of Physics, Polish Academy of Sciences
2Institute of Electronics Technology, Warsaw, Poland
3Institute of Electronic Materials Technology, Warsaw
4Institute of Experimental Physics, University of Hamburg, Germany
In order to detect O at levels relevant to diffusion into FZ Si, it was necessary to employ Si18O$_2$ as a source; [Mikkelsen, 1986]

Our first results in ROSE using 16O; note decreasing concentration at surface
To check correctness of the profiles, one analysis was done until perforation of the wafer.

Oxygen depth profiles for FZ-Si wafers annealed at 1150 °C for: (1) – 16 hrs, (2) – 72 hrs, (3) – 6 hrs.

Immediate observations:

i – the profile1 is not symmetrical with respect to the mid-thickness as it should be since diffusion proceeds from both sides of the (oxidized) 280µm thick wafer.

ii – the O signal levels off at ~2*10^{16} i.e. well above the bkg; hence, direct background correction not feasible.

iii – the mean sputter rate differs markedly from that established at shallow depths from either stylus profilometry or the location of the implant maximum.
Calculated curves for diffusion into a slab

To verify the degree of reliability - a test epi-structure was manufactured for step-by-step measurement on beveled surface (top) or by standard profiling (bottom)
The loss of depth resolution is evident, also the removal rate is not constant; a polynomial fit was derived to enable corrections.

\[
Y = -0.398 - 0.085t - 1.71t^2 + 3.408t^3 - 2.632t^4
\]
Comparison of different results concerning deep O diffusion into FZ Si: (1) calculated, for D=2e-10, C₀=1.7e17, (2) line scan with bkg correction,; continuous profiling: (3) – this work, (4) - ref. [6]
Figure showing the origin of the observed „depletion“ at the surface: it takes place upon prolonged cooling and segregation back to the oxide.
CONCLUSIONS

When a dynamic range of at least two orders of magnitude is required over a depth exceeding 50-70 µm, the beveling of the sample followed by line-scan analysis is necessary.

For shallower [O] distributions, a continuous analysis can be applied; however, the variation of the sputter rate with depth should be taken into account.

When investigating deep diffusion together with the process of oxygen segregation at the SiO$_2$ – Si interface, both methods are recommended.