Fabrication of 3D detectors at
The Detector Development Group of
The University of Glasgow

Richard Bates

M. Rahman, G. Pellegrini, P. Roy, K. Mathieson, D. Jones,
V. O'Shea, K.M. Smith, M. Horn, P. Thornton, J. Melone
Contents

- Simulation
- Methods to form holes
 - Laser
 - RIE
 - Photoelectrochemical etching
n-type GaAs $N_{\text{eff}} = 1 \times 10^{14}$ atoms/cm3

Schottky contacts
- barrier height ~ 0.8eV

Lifetime of carriers altered to take account of the trapping and de-trapping times

Simulation of dry-etch sidewall damage by introduction of a defect concentration around electrodes

MEDICI 3-D detector model

Unit cell

25 μm

Biased electrode

Grounded electrode
Potential distribution

Full depletion

at 50 V

Over depletion

at 75 V

Low field region in between pixel boundaries - eliminated by over-depletion
Movement of carriers

DEPLETED

0s 2ps 8ps 30ps 0.3ns 2ns

OVER DEPLETED

0s 1ps 2ps 5.5ps 13ps 31ps
R. Bates

Oxidise and fill P and N electrodes with Boron or Phosphorus.

Silicon wafer

SiO₂ deposition, 200nm on both side.

Polishing and cleaning procedure.

Resist spinning, AZ4562.

Dry Etching.
Laser drilling.
Electrochemical etching.

N- doped

P - doped

Au (seed)

Al contact

Silicon wafer

Au

Sputtering and electroplating metal to make Schottky contact.

R. Bates
Fabrication options

<table>
<thead>
<tr>
<th></th>
<th>Advantages</th>
<th>Disadvantages</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laser Drilling</td>
<td>• Any material.
• No photolithography.
• Good depth to diameter ratio (>25:1).</td>
<td>• Slow process for big arrays.
• Sidewall damage.
• Tapering.
• Repeatability.</td>
<td>1 hole/3-5 sec.</td>
</tr>
<tr>
<td>Dry etching</td>
<td>• Standard photolithography process.</td>
<td>• Sidewall damage.
• Limited depth to diameter ratio (10:1).
• Si and GaAs only.</td>
<td>1 µm/min.</td>
</tr>
<tr>
<td>Electrochemical etching</td>
<td>• Good depth to diameter ratio (>20:1).
• No sidewall damage.</td>
<td>• Si only (GaAs and SiC?).
• Complex photolithography</td>
<td>0.6 µm/min.</td>
</tr>
</tbody>
</table>
fs Laser

Advantages

- Material independent.
- No heated affected zone (HAZ).
- Low shockwave damage.

Disadvantages

- Tapering.
- Repeatability.
- Surface debris.
Laser characteristics

- Ti:Sapphire laser (TOPS facility)
- 3 mJ pulse with duration of 40 fs
- 1 kHz repetition rate
- 810 nm wavelength
- 405 nm wavelength (using doubling crystal)
Laser drilling

GaAs
- diameter: \(10\mu m\)
- depth: \(300-500\mu m\)

SiC
- diameter: \(8\mu m\)
- depth: \(300\mu m\)
Results in SiC (cut)

200 µm sample
Dry etching

Inductively coupled plasma
• Plasma etcher: SF₆.
• Mask coating: C₄F₈.

100 minutes of dry etching

• 10µm holes in diameter
• 130µm deep.
KOH etching

Standard deposition and photolithography techniques to obtain a SiO$_2$ or SiN mask
Photoelectrochemical etching

[Diagram showing setup with labels: Immersion circulator, Power supply, Holder, Lamp, Sample, Aqueous HF, Pt, K₂SO₄]
Photoelectrochemical etching

1) Standard photolithography to create a mask in SiO$_2$ on the surface.

2) Creation of dimples in hot KOH.

3) The silicon etching process is a primary dissolution reaction of the silicon induced by the hydrofluoric acid and the photogenerated holes.
PEC results (KTH)

- 5% HF
- dia. 30 µm
- 3h30
Electrical Characteristics

- Gold Schottky contacts
- IV and CV characteristics
 - reproduced with Medici
 - included surface defects prior to anneal

- Am-241 α CCE \sim 50% due to voltage drop on defects
Future Work

• Improve Laser ablation for GaAs & SiC
• RIE
 – Wet etch + anneal
 – Improve aspect ratio
• PEC etching of GaAs
• Better contact technology - B/P implants