

Luca Casagrande, CERN

The CERN-RD39 Collaboration

M. C. Abreu¹, V. Bartsch², W. H. Bell³, P. Berglund⁴, W. de Boer², J. Bol⁵, K. Borer⁶,
S. Buontempo⁷, L. Casagrande¹⁴, S. Chapuy⁸, V. Cindro⁹, P. Collins¹⁴, N. D'Ambrosio⁷,
C. Da Viá¹⁰, S. Devine³, B. Dezillie¹¹, A. Dierlamm², Z. Dimcovski⁸, V. Eremin¹²,
A. Esposito¹³, V. Granata^{10,14}, E. Grigoriev², S. Grohmann^{5,14}, F. Hauler², E. Heijne¹⁴,
O. Hempel⁵, R. Herzog⁵, S. Janos⁶, L. Jungermann², I. Konorov¹³, Z. Li¹¹, C. Lourenço¹⁴,
I. Mandic⁹, M. Mikuz⁹, T. O. Niinikoski¹⁴, V. O'Shea³, S. Pagano⁷, S. Paul¹³, K. Pretzl⁶,
P. Rato Mendes¹, G. Ruggiero^{3,14}, K. Smith³, B. Perea Sorano¹⁴, P. Sonderegger¹⁴, P. Sousa¹,
E. Verbitskaya¹², S. Watts¹⁰, E. Wobst⁵, M. Zavrtanik⁹

¹ LIP, Faro, Portugal
 ² IEKP, Karlsruhe University, Germany
 ³ Glasgow University, UK
 ⁴ Helsinki University of Technology, Espoo, Finland
 ⁵ILK, University of Dresden, Germany
 ⁶ LHEP, University of Bern, Switzerland
 ⁷ INFN and University of Naples, Italy
 ⁸ University of Geneva, Department of Radiology, Switzerland
 ⁹ JSI and University of Brunel, UK
 ¹⁰ University of Brunel, UK
 ¹¹ Brookhaven National Laboratory, USA
 ¹² IOFFE, St. Petersburg, Russia
 ¹³ Munich Technical University, Germany
 ¹⁴ CERN, Geneva, Switzerland

- (Radiation Damage in Silicon)
- Silicon at Cryogenic Temperatures:
 ✓ Known Properties
 ✓ The *Lazarus Effect*
- Experimental Results on Diodes
- Position Resolution of a "Resurrected" Detector
- Irradiation in the Cold
- First Application of a Cryogenic Silicon Tracker in a High-Energy Physics Experiment

Working Principle of a Si detector

• Charged particle generates charge by **ionization**

• External field → detect signal **induced** on the electrodes by the charge carriers that drift in the **depleted region** *W*

 $W \propto \sqrt{V_{bias}}$

$$Q_{induced} = q \, \frac{\Delta x}{d}$$

• For a **non-irradiated** detector (the non-depleted region is metal-like):

$$CCE \equiv \frac{Q_{measured}}{Q_{generated}} \propto \frac{W}{d}$$

•
$$CCE = 100\% \rightarrow$$
 need to apply V_{bias} such that $W = d$

$$V_{bias} = V_{dep} = \frac{q}{2\boldsymbol{e}_0 \boldsymbol{e}_s} N_D d^2$$

 V_{dep} : depletion voltage N_D : density of impurities (donors, ~10¹² cm⁻³)

Radiation Damage in Si

Vacancies and interstitials move around and combine with lattice impurities
→ stable defects, which appear as deep energy levels in the forbidden band gap of silicon

Radiation Damage in Si

Macroscopic observables:

- Leakage current increases linearly with dose
 - → increase of detector noise
 - \rightarrow power dissipation in the sensor
- Trapping and de-trapping of carriers
 - → signal loss

valence band

• At equilibrium, a certain fraction of defects are filled and therefore charged, so they contribute to the **effective doping concentration** $(N_D \rightarrow N_{eff})$

• Experimental observation: under irradiation, space charge become more and more negative

→ dramatic increase of depletion voltage ($V_{dep} \mu N_{eff} d^2$)

Annealing: N_{eff} changes also after irradiation
 → need to keep the detector at -10°C

CCE for Irradiated Detectors

Under bias, space charge is negative, → bulk behaves like a *p*-type material.
The junction develops from *n*⁺

Heavily irradiated detector
→ the non-depleted region behaves like an insulator

$$\rightarrow Q_{induced} \propto W/d$$

$$\Rightarrow CCE \propto \left(\frac{W}{d}\right)^2$$

$$W/d = 70\% \rightarrow CCE = 50\% !!!$$

Known Properties of Si at Cryogenic Temperatures

Silicon at Cryogenic Temperatures

Higher Mobility

Leakage Current vs Temperature

Exponential Decrease of Leakage Current

Irradiated detector

→ no power dissipation in the sensor

Is there anything else ?

CCE vs Temperature

• Experimental observation: heavily irradiated Si detector no longer operational at room temperature "resuscitate" when cooled down to cryogenic temperatures

Is there anything else?

The Lazarus Effect

The Lazarus Effect

Elena Verbitskaya et al., presented at RD39 Coll. Meeting, CERN, March 1-2 2001.

• By cooling, we manipulate the Si bulk properties

- Most relevant:
 charge carrier density
 - ✓ de-trapping probability
- Cooling \Rightarrow fraction of charged traps decreases $\Rightarrow |N_{eff}|$ decreases

Results on Diodes

Conventional Operation

T = 80 K

 $300 \,\mu\text{m} + 10^{15} \,\text{n/cm}^2 @ 130 \,\text{K} @ 250 \,\text{V} \not P 5'000 \,e^{-1}$

Forward Bias Operation

 $300 \,\mu\text{m} + 10^{15} \,\text{n/cm}^2 @ 130 \,\text{K} @ 250 \,\text{V} P 15'000 \,e^{-10}$

Operation in Presence of Light

 Short wavelength light absorbed in few µm → only positive charge flows through the bulk, compensating negative space charge:
 → *|Neff|* becomes smaller

G. Lutz, NIM A 377 (1996) p. 242:

"Partial charging of defects can be influenced by increasing the carrier density of one type against the other by e.g. providing a surface generated current (e.g. illumination of one side of the detector). Reducing the full depletion voltage of a detector by this method may work only in **unpractical conditions** (as e.g. **very low temperature** or high current)..."

What about Annealing?

The CCE at cryogenic temperatures does not depend on the annealing status of the detector

→ need to cool only during operation !!!

Cryogenic silicon is a (kind of) new material ...

...what can we do with it?

"Double P" Detector

400 μ m + 10¹⁵ n/cm² @ 130 K @ 500 V \not 27'000 e^{-1}

The charge is back, but what about position resolution ?

The DELPHI Microstrip Detector

- 1 module = 1280 channels
- strip pitch: p-side 25 mm, n-side 42 mm
- AC coupling
- readout: MX6, 3 mm CMOS, 1 ms peaking time

irradiated with 3.5 ⁻ 10¹⁴ 24 GeV protons / cm²

K. Borer et al, NIM A **440** (2000) 17

Position Resolution

Cryogenic cooling of a segmented detector results also in recovering the position resolution !

What happens when irradiating in the cold ?

Si Detector Irradiated at 83 K

Irradiation with (400 GeV) protons

No significant differences compared to room temperature !

260 K vs 130 K

		260 K	130 K
 Leakage current → detector noise → power in the sensor 		OK @ 10 ¹⁴ n/cm ² ~100µW/mm ²	OK @ 2×10 ¹⁵ n/cm ² (~1µW/mm ²)
• CCE (trapping reverse bias	+ depletion) $3 \times 10^{14} \text{ n/cm}^2$: $2 \times 10^{15} \text{ n/cm}^2$: $2.8 \times 10^{14} \text{ n/cm}^2$: $1 \times 10^{15} \text{ n/cm}^2$:	65% @ 500V ? 70% @ 50V (I = 6μA / mm ²)	100% @ 250V 20% @ 250V 70% @ 250V (I < 1nA / 5×5mm ²)
• Annealing:		need to keep the detector at -10°C	cooling only during operation

The first application: Cryogenic Heavy Ion Beam Tracker for the NA60 Experiment

The NA60 Experiment

- Study μ⁺μ⁻ production in heavy ion collisions
- Signals related to phase transition from hadronic matter to Quark-Gluon Plasma
- First measurement of charm production in heavy ion collision

Need to measure the transverse coordinates of the interaction point

✓ Good position resolution: ~20 µm
 ✓ Good timing: two-pulse resolution < 5 ns
 ✓ Extreme radiation hardness: ~100 Grad

The Cryogenic Module

- Low mass cooling pipe ($\mathbf{I} = 1$ mm, 100 μ m thick)
- Integrated thermo-electrical design improves performance
- Temperature can be adjusted between 80K and 300K by adjusting the $\rm LN_2$ flow and the power dissipated through a heater placed on the PCB

Double-sided glass-epoxy PCB

- 24 narrow strips (50 **m** pitch)
- 2⁴ wide strips (500 **m** pitch)

L. Casagrande - CERN

The Beamscope Readout

Test Beam Conditions

November 1999:

detector concept

- Exposed for 3 days to 40 A GeV Pb beam
- Average beam intensity: 5 10 6 ions per 4.5 s burst
- Total dose: ~ 1 Grad

October - November 2000: radiation tolerance

- Parasitic to NA50
- Exposed 4 days to 40 A GeV and 38 days to the 158 A GeV Pb beam
- Average beam intensity: 7 10⁷ ions per 4.5 s burst
- Total fluence: 5±2 '10 ¹⁴ ions/cm² (90 ± 40 Grad)
- Electronics suffered much from radiation in the beam area

True (unshaped) Pb Ion Signal

Non-irradiated

- Very fast rise time (< 500ps)
- Very long tail (~20ns)

After 20 days (40 ± 20 Grad)

- Signal is broader
- Amplitude ~20 times lower... but we see it !

Beam Profile

MHTR Timing

MHTR Timing & Cluster Correlation

Cluster Size

- Contrary to what is expected in segmented Si detectors, cluster size increases with Vbias.
- Different charge generation process of Pb vs MIPs ?

Pulse Height Evolution

- Work to be done to understand the detail of the phenomenon. Nevertheless, data clearly show that:
 - ✓ CCE dramatic improves at T ~ 130 K
 - ✓ If charge is back, the position resolution is also recovered
 - → Cryogenic Operation is a robust technique to extend the lifetime of Si trackers by more than order of magnitude
- For heavy ions, where very large signals are obtained, Cryogenic Silicon can work up to several tens of Grad
- Cooling must be integrated in the mechanical design
- Thermal design is easier at 80 K than at 250 K
- 2-phase nitrogen is an excellent coolant
- Future:
 - ✓ Cryogenic Detectors for TOTEM
 - ✓ Beamscope for NA60 (also for protons)
 - ✓ Vertex Tracker of COMPASS