GEM Detectors for COMPASS

Bernhard Ketzer

$\mathsf{CERN}-\mathsf{EP}/\mathsf{TA1}$

16 May 2000

Solid State Detectors Seminar

Outline

- The COMPASS experiment
- Gas Electron Multiplier basics
- Discharge studies
- Design of COMPASS GEM detectors
- Construction
- Quality control
- Readout electronics
- Performance in the beam
- Summary and Outlook

The Physics Program

 $\begin{array}{c} CO_{mmon} & M_{uon} \text{ and } P_{roton} & A_{pparatus} \text{ for } S_{tructure and} & S_{pectroscopy} \end{array}$

Muon beam

• Gluon polarization $\Delta G/G$

Photon-gluon fusion

- Longitudinal and transversal spin distribution
- Polarization of Λ and $\overline{\Lambda}$

Hadron beam

- Study of charm hadrons
- Study of hadron structure with virtual photons

Primakoff scattering

• Exotic hadrons (glueballs, hybrids)

The Spectrometer

Target:	Polarized ⁶ LiD, liquid hydrogen, active charm target		
Tracking:	large area	small area	
before SM1	Drift chambers	Micromegas, Si, SciFi	
after SM1	Straws, MWPC	GEM, Si, SciFi	
Particle Id:	2 RICH with MWPC $+$ Csl photocathode pads		
	RICH 1	C_4F_{10}	
	RICH 2	C_2F_6+Ne	
Coloringotar	electromagnetic, hadronic		
Calorimetry:	electroniagi		
Calorimetry:	ECAL	lead glass + PbWO ₄	
Calorimetry:	ECAL HCAL	lead glass + PbWO ₄ lead/scintillator	
Muon Id:	ECAL HCAL	lead glass + PbWO ₄ lead/scintillator	
Muon Id:	ECAL HCAL Muon filter walls	lead glass + PbWO ₄ lead/scintillator concrete + iron	
Muon Id: after walls	ECAL HCAL Muon filter walls Drift tubes (ϕ 3 cm)	lead glass + PbWO ₄ lead/scintillator concrete + iron	

Beam parameters		Muon beam	Hadron beam
		μ^+ , μ^-	p,K,π
	x imes y (RMS) (mm ²)	7.8 imes7.8	1.5 imes 1.1
	$x' \times y'$ (RMS) (mrad)	0.4 imes 0.8	0.29×0.48
	Momentum (GeV/ c)	100-200	270–300
	Flux (per spill)	1.8×10^{8}	10^{8}

Trigger rates

Muon program $10 \, \mathrm{kHz}$

Hadron program $10 - 100 \, \mathrm{kHz}$

Requirements for Small Area Trackers

- High rate capability
- High spatial resolution
- Large active area
- "Massless detectors"

 \Rightarrow Micropattern gas detectors

Micromegas12muon programGEM20hadron + muon program

GEM – **Principle**

Gas Electron Multiplier [F. Sauli, NIM A386, 531 (1997)]

- Thin polymer (Kapton) foil, typ. $50\,\mu\mathrm{m}$ thick
- Metal-clad on both sides, typ. $5\,\mu{
 m m}$ Cu
- Perforated by large number of holes, typ. $10000/{\rm cm^2}$: photolithography + etching process

GEM-based Detector

- Gain is a property of GEM foil
 ⇒ little dependence on external fields (mechanical tolerances!)
- Signal on readout electrode entirely due to electron collection
- No slow ion tail, no ion feedback
- Possibility to cascade several GEM foils \Rightarrow higher gain
- Separation of gas amplification and readout stage
 ⇒ high flexibility!
- Readout electrodes remain on ground potential

High rate capability $> 10^5 \, \mathrm{Hz}/\mathrm{mm}^2$

No aging observed up to $10\,\mathrm{mC}/\mathrm{mm}^2$

Choice of Gas Filling

Requirements for use in high rate HEP applications:

- Non-polymerizing (aging!)
- Large drift velocity
- Low diffusion
- High gain at low operating voltages
- Non-flammable

$$\Rightarrow \operatorname{Ar/CO}_2 (70\%/30\%)$$

Gas Discharges

- Due to manufacturing defects \Rightarrow QC
- Due to nuclear interactions on exposure to heavily ionizing tracks

Systematic investigation of

- Probability of discharge
- Energy/charge released in a discharge
- \Rightarrow Strategies to optimize GEM detectors for successful operation under harsh COMPASS conditions

Defects in GEM Foils

Discharge Probability

Discharge Energy I

 $10 \times 10 \,\mathrm{cm^2}$ DGEM, sectorized, $5.3 - 8.8 \,\mathrm{MeV} \, lpha \, (^{228}\mathrm{Th})$

Discharge Energy II

Discharges in GEM only

- Charge released depends on capacitance between electrodes
- Fraction of charge collected depends on induction field
- Duration $\sim 200 \text{ ns} \Rightarrow Q \sim 2.5 10 \text{ nC}$

Full discharges to readout strips

- Charge released determined by capacitance and potential difference between readout and lower GEM electrode ($C \sim 60 \,\mathrm{pF}$ for $10 \times 10 \,\mathrm{cm}^2$ GEM; $\Delta U \sim 800 2000 \,\mathrm{V}$)
- Charge $Q \sim 50 120 \,\mathrm{nC}$, current $I \sim 1 \,\mathrm{A}$

\Rightarrow Protection of FE chip necessary!

COMPASS GEM

Probability of Full Discharges

 $10 \times 10 \,\mathrm{cm^2}$ DGEM, sectorized, $5.3 - 8.8 \,\mathrm{MeV} \, lpha$ (²²⁸Th)

• Probability of propagation depends on E_{ind} and energy of primary discharge (GEM capacitance)

 \Rightarrow Can be decreased by decreasing sector size:

13 sectors instead of 5

Sharing of Gain

Asymmetric gain sharing between GEMs

 \implies probability of discharges lower by 2 orders of magnitude at given gain

COMPASS GEM design I

Triple GEM: Probability of discharge at given gain lower by more than one order of magnitude compared to DGEM

Sectorized foils: Decrease energy stored in GEM foils

- Charge released in a GEM discharge smaller
- Probability of propagating discharge lower

"Beam killer": Central area of $5\,\mathrm{cm}~\phi$ can be deactivated

Readout: 2-dim, 2×768 strips, $400 \,\mu m$ pitch

 \Rightarrow Active area $30.7 \times 30.7 \,\mathrm{cm}^2$

Thickness of detector: $15 \,\mathrm{mm}$

COMPASS GEM design II

Two-dimensional Readout

Production process [A. Gandi, R. de Oliveira, CERN-EST]

- Two orthogonal sets of parallel Cu strips, engraved on two sides of Cu-clad Kapton foil $(50 \,\mu m \text{ thin})$:
 - $80\,\mu{
 m m}$ width on upper side
 - $350\,\mu{
 m m}$ width on lower side
 - $400 \, \mu \mathrm{m}$ pitch
- Gluing of Kapton foil onto a thin insulating support (fiber glass)
- Chemical removal of Kapton in the interstices between the strips on the upper side
 ⇒ Bottom layer of strips is opened to charge collection
- Charge sharing 1 : 1 between upper and lower layer achieved by adjusting strip widths

Construction of GEM detectors

- Carried out by K. Dehmelt [Univ. Mainz] and M. van Stenis [CERN-EP/TA1] in TA1 cleanroom: class < 10000, humidity + temperature controlled
- Protective clothing: overall, shoe-covers, hair-covers, facial masks, gloves

Construction – Tools & Materials

Tools: designed by M. Delattre and M. van Stenis

- Alignment plate and gluing tool
- Heating cover with N₂ flow
- HV test box with N₂ flow

Materials:

Glue:	ARALDIT AY103 + HD991 (ratio 10:4)	
Support:	$2 imes 125 \mu { m m}$ Stesalit on	
	$3\mathrm{mm}$ Honeycomb Nomex	
Drift foil:	$5\mu{ m m}$ Cu on $50\mu{ m m}$ Kapton	
GEM foils:	$2 imes 5 \mu { m m}$ Cu on $50 \mu { m m}$ Kapton	
Frame:	$3\mathrm{mm}$ Stesalit	
Spacer grid:	$2\mathrm{mm}$ Vetronite	
Sealant:	Polyurethane Nuvovern LW (2 comp.)	
Strin PCB ¹		
Strip i CD.	$2 imes 5\mu{ m m}$ Cu on $50\mu{ m m}$ Kapton,	
	$2 imes 5\mu{ m m}$ Cu on 50 $\mu{ m m}$ Kapton, $60\mu{ m m}$ NoFlow glue,	
Strip i CD.	$2 \times 5 \mu{ m m}$ Cu on 50 $\mu{ m m}$ Kapton, $60 \mu{ m m}$ NoFlow glue, $120 \mu{ m m}$ Stesalit	
Shielding	$2 \times 5 \mu{ m m}$ Cu on 50 $\mu{ m m}$ Kapton, $60 \mu{ m m}$ NoFlow glue, $120 \mu{ m m}$ Stesalit $5 \mu{ m m}$ Aluminum	

Part	Material	$^0/_{00}$ of X_0
GEM	Cu: $6 \times 5 \mu m (X_0 = 14.3 mm) \times 0.8$	1.68
	Kapton: $3 imes 50 \mu \mathrm{m} \; (X_0 = 286 \; \mathrm{mm}) \; imes 0.8$	0.42
		Total: 2.1
Drift	Cu: $5\mu\mathrm{m}$	0.35
	Kapton: $50\mu{ m m}$	0.17
		Total: 0.52
Grid	G10: $3 \times 2 \text{ mm} (X_0 = 194 \text{ mm}) \times 0.008$	Total: 0.25
РСВ	Cu ($80\mu{ m m}$ strips): $5\mu{ m m} imes 0.2$	0.07
	Cu $(350\mu{ m m}~{ m strips})$: $5\mu{ m m} imes 0.75$	0.26
	Kapton: $50\mu{ m m} imes 0.2$	0.03
	G10: $120\mu\mathrm{m}$	0.62
	NoFlow Glue: $60\mu{ m m}\;(X_0=200~{ m mm})$	0.30
		Total: 1.28
Shield	Al: $5 \mu \mathrm{m} (X_0 = 89 \mathrm{mm})$	Total: 0.06
		Total: 4.21
HC	NOMEX: $2 \times 3 \text{ mm} (X_0 = 13125 \text{ mm})$	Total: 0.46
Skins	G10: $4 \times 120 \mu\mathrm{m}$	Total: 2.47
		Total: 7.14

Construction Steps I

Assembly starts from drift side:

- Glue Stesalit skins onto honeycomb $(330 \times 330 \, {\rm cm^2})$
- Glue drift foil onto honeycomb sandwich
- $\bullet~3\,\mathrm{mm}$ frame with gas distribution channels
 - Seal with Polyurethane
 - Clean in ultrasonic bath
 - Test for HV stability (up to $5 \,\mathrm{kV}$)
 - Glue gas input pipe
- Glue frame onto drift foil

Construction Steps II

Pre-tension GEM foil

- Stretch GEM foil over transfer frame
- Glue GEM foil onto transfer frame
- HV test

Construction Steps III

Glue GEM foil

- Mount drift honeycomb on alignment plate, fix with vacuum
- Apply glue to the frame using gluing wheel
- Align GEM on transfer frame to honeycomb using pins
- Apply weight to the transfer frame to stretch GEM
- Cut out GEM from transfer frame
- HV test

Construction Steps IV

Glue spacer grid

- Apply glue to the spacer grid using gluing wheel
- Mount drift honeycomb on alignment plate, fix with vacuum
- Align spacer grid to honeycomb using pins
- Apply weight to the spacer grid
- HV test

Construction Steps V

Large honeycomb, Strip PCB

- Insert gas outlet piece into honeycomb
- Glue Stesalit skins onto honeycomb $(500 \times 500 \, {\rm cm^2})$
- Strip PCB:
 - Measure strip pitch and deviation from parallelism
 - Check for shorts

- Glue strip PCB onto honeycomb sandwich
- Close detector by gluing drift stack onto large honeycomb using alignment pins inserted into large honeycomb

GEM quality control I

Optical transparency

 \Rightarrow relative alignment of holes in two Cu electrodes

GEM quality control II

HV test:

- up to $600\,\mathrm{V}$ before mounting
- up to $550 \,\mathrm{V}$ after each gluing step

 \Rightarrow monitor leakage currents of sectors, shorts

HV Distribution

- Resistor network instead of individual power supplies
- Main chain defines fields between foils and gain in GEM
- Individual protection resistors on upper GEM side: $10 \text{ M}\Omega$ \Rightarrow Most of the potential drop on upper side in case of discharge! Limitation: max. 5 V potential drop under exposure to high intensity beam (10^8 s^{-1} , $G = 5 \cdot 10^3$)
- Operational even with permanent short in one sector: small drop of potential in remaining sectors can be compensated by slightly increased HV
- Room for improvement: sectorization on both sides of the GEM foils

Gas leak test (pure CO_2)

HV distribution boards:

- Chemical cleaning of boards after assembly of resistors
- Coating of boards with HV-proof varnish
- Test of each individual board before mounting

HV stability:

- Test of each individual GEM foil before mounting HV boards (pure CO₂)
- Test for external discharges at nominal voltage (pure CO₂)
- Test for internal discharges at nominal voltage (Ar/CO_2)

Detector performance:

- Check for shorts in readout circuit
- $\bullet~$ Gain map with 8.9~keV X-rays, using standard laboratory preamplifier/amplifier

Uniformity of Gain and Resolution

Cu X-ray spectra (8.9 keV) in 4×4 points over each detector for both strip layers

Maps of relative gain and energy resolution

Gain Calibration

Effective gain: measure current on readout strips I as a function of count rate R under irradiation with 8.9 keV X-rays

$$G = \frac{I}{e_0 N R}, \qquad e_0 N: \text{ primary charge}$$

Gain calibration at points with maximum and minimum gain

GEM Readout

"Deadtime-less" frontend electronics \Rightarrow Pipeline

APV25-S0: CMS Si microstrip tracker FE chip

- Analogue pipeline ASIC fabricated in $0.25\,\mu{\rm m}$ CMOS technology
- Preamplifier + shaper (50 ns peaking time)
- 192 memory cells , channel
- Samples written at 40 MHz
- FIFO depth 31 events \Rightarrow Latency up to $4 \,\mu s$
- MUX output

Front-end Electronics

FE-card: 3 APV chips, glass pitch adapter, $220 \ \rm pF$ capacitors, BAV99 double diodes for input protection

Readout chain: designed and built by I. Konorov (TU München)

COMPASS SAT – Beam Tests

CERN PS-T11: $10^6 p, \pi/\text{spill}, 3.6 \text{ GeV}/c$

3 triple GEM detectors:

- 2 fully equipped with electronics (3072 channels)
- 1 half equipped with electronics (768 channels)

1 Si microstrip detector:

- $5 \times 7 \, \mathrm{cm}^2$, double-sided, $300 \, \mu \mathrm{m}$ thick
- $50\,\mu\mathrm{m}$ strip pitch (2304 channels)

Cluster Amplitudes

Single cluster, $U_0 = 4050\,\mathrm{V}~(G\sim8000)$

TGEM11

• Strip noise: $1050 \,\mathrm{e^-}$ ($80 \,\mathrm{\mu m}$), $1250 \,\mathrm{e^-}$ ($350 \,\mathrm{\mu m}$)

Cluster Amplitude Correlation

- Charge sharing between strip planes ~ 1
- Narrow correlation between amplitudes: $\sigma=0.09$

 \Rightarrow Resolve hit ambiguities

Hit Map

- Image of scintillator used for triggering clearly visible
- Deactivation of central part works efficiently
- Inactive regions underneath spacer grid

Cluster Size

Cluster:

- strip amplitude $> 3\sigma_i$
- cluster amplitude $> 5 \sqrt{\sum_i \sigma_i^2}$

Efficiency

$80 \ \mu m$ strip layer:

TGEM11

$350\,\mu\mathrm{m}$ strip layer:

Hit Correlations

TGEM11 — SIL6, two projections

Time Resolution

APV25: 3-sample readout, rising edge of signal

GEM detectors meet requirements for tracking devices in modern HEP experiments:

- high rate capability
- no aging observed
- large active area
- thin, little material
- cheap

COMPASS adopted GEM detectors for SAT:

- $31 \times 31 \, \mathrm{cm}^2$ active area
- 2-dimensional projective readout

Optimization

- triple GEM amplification
- sectorization of GEM foils
- asymmetric gain sharing
- input protection for FE chip APV25 S0

Beam test of COMPASS GEM detectors

- no loss of electronic channels
- low noise
- efficiency plateau reached at gain $\sim 8000 \text{, } S/N \sim 18$
- narrow correlation of pulse heights
- time resolution $< 15\,\mathrm{ns}$

Production of GEM detectors for COMPASS

- Ongoing at CERN-EP/TA1
- 9 detectors of final design assembled
- test procedures for QC of components and detectors defined

Goal for 2001: 14 detectors (70% of total)

The Group

C. Altunbas, K. Dehmelt, J. Friedrich, B. Grube, S. Kappler, B. Ketzer, I. Konorov, S. Paul, A. Placci, L. Ropelewski, F. Sauli, H.-W. Siebert, F. Simon, M. van Stenis

Special Thanks

M. Sanchez (PCB design), R. de Oliveira (GEM production), G. Hall, M. Raymond (APV design), A. Honma, K. Mühlemann (Bonding), L. Schmitt (DAQ), TUM Si group

