

THERMAL SIMULATIONS of TOTEM MODULES

B. Perea Solano, CERN EP

Seminar on Solid State Detectors - Geneva 11th July 2001

A G E N D A

- Prototype module
- Thermal Simulations
 - readout electronics and other thermal loads
 - modeling of the thermal behavior
 - mechanical design and choice of materials
 - results for different materials and cooling
- Thermal Stress Simulations
- Conclusions Next Steps

MECHANICAL DESIGN

Solid State Detector Seminar - 11th July 2001 - CERN

SUMMARY OF HEAT LOADS

THERMAL LOADS					
READOUT CH	HIPS	THERMAL RADIATION			
Detector Surface:	30 x 30 mm				
Segmentation:	≈50 µm	Aluminium Pot 300 K			
Number of channels:	1280				
APV-25 readout electronics		Detector module 130 K			
Power dissipation per channel:	2.31 mW				
Number of channels per chip:	128	Total thermal radiation load 235 mW			
Number of chips per module:	10				
Power dissipation per module:	3.0 W				

THERMAL RADIATION LOAD

 Two diffuse-gray surfaces forming a cylindrical or spherical enclosure:

$$q_{1-2} = \frac{\sigma A_1 (T_1^4 - T_2^4)}{\frac{1}{\varepsilon_1} + \frac{A_1}{A_2} (\frac{1}{\varepsilon_2} - 1)}$$

- Assumptions:
 - Silicon Module (ε₁=0.19 A₁=38 cm²) at 130 K
 - Aluminium Pot (ε₂=0.06 A₂=345 cm²) at 300 K

ANSYS THERMAL MODEL

M E S H I N G

Spatial accuracy = 0,5 mm

Number of Nodes ≈ 51.000

BOUNDARY CONDITIONS

Heat Flux

Heat Loads

Heat Sink

Bulk T fluid (110 K – 120 K)

Convection coefficient 10⁴ W/m²K

THERMAL CONDUCTIVITY AND LINEAR EXPANSION

Solid State Detector Seminar - 11th July 2001 - CERN

Ν S Y S Μ D Α 0 E L

Materials of the reference mod

- silicon strip detector
- support
- hybrid
- pitch-adapter
- cooling pipe
- spacer

silicon

Components are glued toget with radiation resistant cryogenic epoxy.

nce module:	T	<u>hermal bound</u>	ary (conditions:
silicon		APV25		
silicon		power		
aluminum		dissipation	•	1.2 W
oxide	•	thermal		
glass		radiation	•	235 mW
copper-	•	fluid bulk		
nickel		temperature	•	120 K
silicon	•	heat transfer		
		coefficient	•	104
led together		W/m²K		

THERMAL SIMULATION Pyrex PA-Al₂O₃ Hybrid Silicon

THERMAL SIMULATION Pyrex PA-Al₂O₃ Hybrid Silicon

Solid State Detector Seminar - 11th July 2001 - CERN

THERMAL SIMULATION Pyrex PA-AIN Support Silicon

Solid State Detector Seminar - 11th July 2001 - CERN

THERMAL SIMULATION Silicon $PA=Al_2O_3$ Hybrid Silicon

Solid State Detector Seminar - 11th July 2001 - CERN

THERMAL - STRESS SIMULATION

 Study the stresses that result from temperature gradient and different thermal dilatation coefficients of the materials

• Glue : high thermal dilatation coefficient, fillers

• Minimize displacements of the module with symmetric structures

Solid State Detector Seminar - 11th July 2001 - CERN

C O N C L U S I O N • N E X T S T E P S

- Silicon, which is an excellent heat spreader at low temperatures, will be also used as constructive material.
- Evaporative cooling in microtubes provides ideal thermal separation of the heat source from the sensor and leads to a very homogeneous temperature profile in the module.
- Experiments are planned to validate the thermal and stress simulations (tooling and conductivity tests).
- Alignment of the detector relative to the pot
- Characterization of the APV-25 at low temperature

