

Development of cryogenic silicon detectors for the TOTEM Roman pots

S. Grohmann, CERN ST-CV RD39 Collaboration

Seminar on Solid State Detectors July 11, 2001

Table of contents

- Introduction / Roman pots in TOTEM
- Cryogenic silicon detectors
- Principle of cooling
 - cooling methods
 - working fluids
 - prototype layout
 - circuit components
 - two-phase flow pressure drop and flow boiling
 - test circuit design
- Conclusion

Integration of the TOTEM Roman pots in LHC

Layout of a Roman pot station

Cryogenic silicon detectors in the Roman pots

Detectors:

- x-y strips
 (10 μm spatial resolution)
- edgeless (min. distance to the beam 20 σ_v)
- circular dent
- overlapped (relative alignment)
- vacuum insulation

Edge current vs. bias potential and temperature - Preliminary results -

Seminar on Solid State Detectors

Summary of heat loads

Module power dissipation		Total Capacity per Station		
Module	20 20	Module	0.117	
Surface:	$30 \ge 30 \text{ mm}$	Total power:	3 W	
Segmentation:	$\approx 50 \ \mu { m m}$	Number of modules:	4	
Number of channels:	1280	Roman pot		
<u>APV25 readout electronics</u>		Radiation heat load:	$1 \mathrm{W}$	
Power dissipation per channel:	$2.31 \mathrm{~mW}$	Interface thermal losses		
Channels per chip:	128	Heat sink / fluid circuit:	$2 \mathrm{W}$	
Number of chips:	10	Transfer lines:	$5 \mathrm{W}$	
Power dissipation per module:	3.0 W	Total:	$20 \mathrm{W}$	

Temperature ranges for cryogenics and refrigeration

Seminar on Solid State Detectors

"Conventional" way of sensor cooling at cryogenic temperatures

 sensor directly attached to a cold finger (stirling or puls-tube)

vibrations, space

or

separation via copper braid

small distance, mass

fluid circuit with direct evaporation to fulfill requirements in TOTEM

Working fluids for evaporative cooling at 120 K

Fluid name	M[g/mol]	$T_{tr}[K]$	$T_{crit}[K]$	$T_{nb}[K]$	$p_{120K}[bar]$
Perfluoromethane (CF_4)	88.01	98.9	227.5	145.1	0.11
Krypton (Kr)	83.80	115.8	209.4	119.8	1.03
Methane (CH_4)	16.04	90.7	190.6	111.7	1.91
Oxygen (O_2)	32.00	54.4	154.8	90.2	10.2
Argon (Ar)	39.95	83.8	150.7	87.3	12.2
Nitrogen (N_2)	28.01	63.2	126.0	77.4	25.3

Cooling Methods Joule-Thomson Process

Cooling Methods Flooded System

Seminar on Solid State Detectors

Principle of cooling

Heat Sink

Gifford-McMahon Cryocooler

Integral Stirling

Thermal interface *condenser / receiver*

Cryogenic Micro Pump

Two-phase flow pressure drop in microchannels

In general:

- frictional, accelerational and hydro-static term
- ◆ correlations for homogeneous and separated flow models (d_h ≥ 5 mm)
- Storek and Brauer:

 $\frac{1}{\rho_{h}} = \frac{x}{\rho_{g}} + \frac{1-x}{\rho_{l}} \qquad \frac{1}{\eta_{h}} = \frac{x}{\eta_{g}} + \frac{1-x}{\eta_{l}}$ correction factor for $w_{v} > w_{l}$

In microchannels:

- tube dimensions are in the same order of magnitude as the thermal and hydrodynamic boundary layers
- Reynolds analogy is no longer valid (Re_{crit} = 200-900)
- no correlation
- few data for single-phase flow published

Calculated pressure drop in the Roman pot detector modules

Seminar on Solid State Detectors

Flow boiling in microchannels

In general:

- heat transfer depending on:
 - operating conditions
 - fluid properties
 - heating-wall properties
 - phase distribution
 - fluid quality
- nucleate boiling: $\alpha = f(\dot{q})$
- Algorithms only for macroscale tubes with d_h ≥ 5 mm
- Steiner reference quantities: $d_0 = 10 \text{ mm}; m_0 = 100 \text{ kg/m}^2\text{s}$

In microchannels:

- 'simple' scaling to our dimensions increases the HTC by factor 10
- different flow profiles due to relatively large boundary layers
- concept of 'evaporating space' and 'fictitious boiling' introduced by *Peng*
- few data published

Peng's nucleation criterion for microtubes

Calculated HTC in the Roman pot detector modules

Seminar on Solid State Detectors

Test circuit layout

Test Stand - Total View

Test Stand - Cooling Rack

Conclusion

- Edgeless silicon microstrip detectors are being designed for the TOTEM Roman pots with their sensitive area as close as $20 \sigma_y$ to the beam.
- Spatial resolution of 10 μ m is obtained with a pitch of about 50 μ m.
- A circular dent and the detector overlapping allow relative alignment of the sensors using the measuring data.
- Detectors are cooled by direct evaporation in integrated microtubes, which provides minimum mass contribution, constant temperature profiles and extremely high heat transfer rates, and effective decoupling of vibrations.
- Experiments are under way to study two-phase flow pressure drop and heat transfer in microchannels and to test the new circuit components.