Silicon Containing Oxygen Dimer

A radiation hard sensor material?

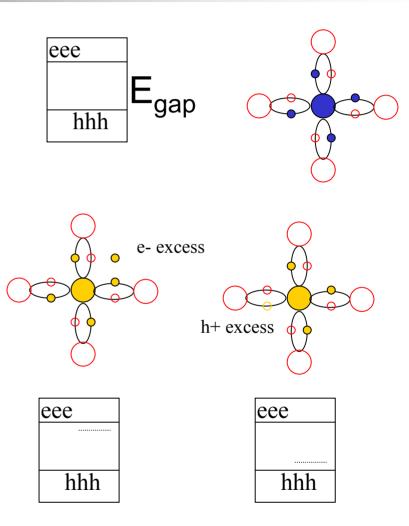
Veronique Boisvert CERN Michael Moll

SSD Seminar September 25th

Outline

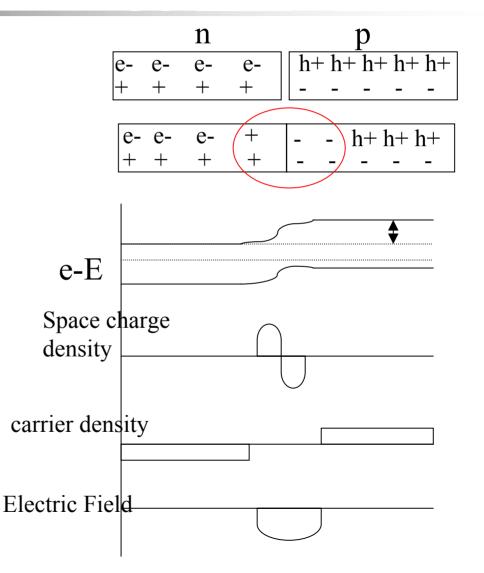
Motivation

- Basic Properties of Silicon detectors
- Radiation damage
- Evidence of Oxygen dimer
 - How can they be produced?
 - How could they help?
- Proposed Experiment
 - Crude estimates
 - Simulations


Basic Properties of Si detectors

- Pure intrinsic semiconductors:
 - Si RT: E_{gap} =1.1eV
 - [e,h]~1.5x10¹⁰cm⁻³
 - \rightarrow 1 in 10¹² Si atom ionized
- Doped extrinsic sc:
 - ~10¹³ dopant atoms/ cm³

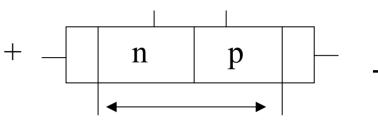
 Donor impurity: Ac
 Pentavalent atoms
 Current: mostly e-, minority:h+
 n-type (eg P)

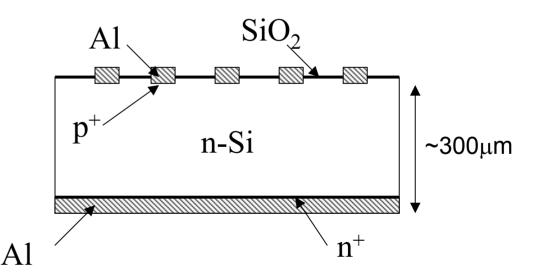

Acceptor impurity:

- Trivalent atomsCurrent: mostly h+,
- minority:e-
- ∎p-type (eg B)

Basic Properties of Si detectors

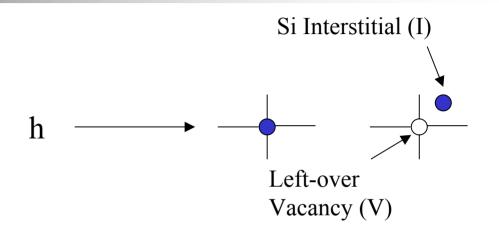
- np Junction
 - Contact is difficult
 - Depletion depth:
 - No charge carriers
 - For Si~74µm (small)
 - Main issues:
 - Intrinsic E too small for good charge collection efficiency
 - Too small depletion depth
 - Small thickness →large C →noise increase


Basic Properties of Si detectors


Reversed Bias Junction

- Apply –V on p side
 - Higher voltage \rightarrow greater d
 - More efficient cc
 - High resistivity Si~5mm
 - High purity needed

Microstrip Detectors

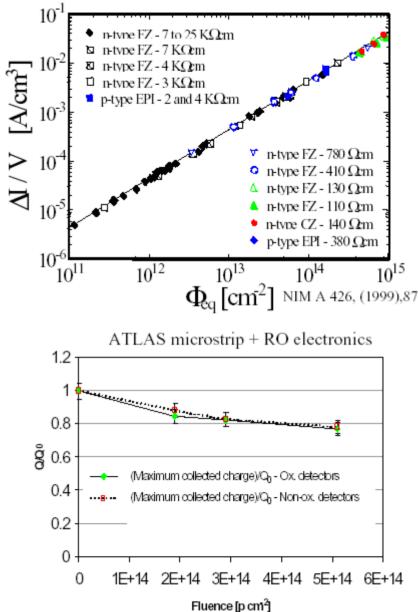

- V full depletion~160V
- Resolution ~5µm
- ~100 e-h pairs/µm

Damage mechanism

- particle incident on PKA
 - If E>~25eV: Frenkel pair
 - If E>~5keV: cluster
- Particle type dependence:
 - Neutrons:
 - If E~185eV: Frenkel
 - If E~35keV: cluster
 - Electrons:
 - If E~255keV: Frenkel
 - If E~8MeV: cluster
 - $CO^{60} \gamma$: e- from Compton sc.
 - E~1MeV \rightarrow only Fr. pairs

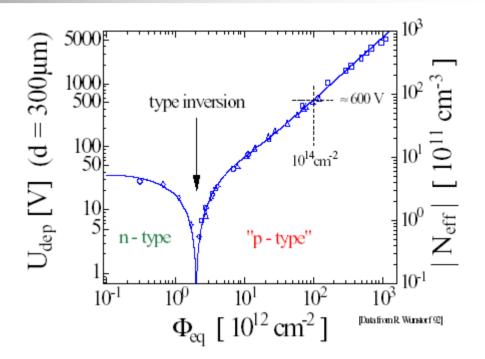
60% annihilate

Rest: combine with each other or impurities

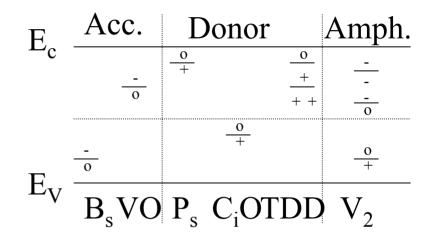

 \rightarrow Macroscopic deterioration

Future of HEP:

- LHC: design L=10³⁴ cm⁻² s⁻¹ \u03c6(R=4cm)~3x10¹⁵cm⁻² after 10 years
 - Then need replacement
- LHC upgrade: L=10³⁵cm⁻² s⁻¹ φ(R=4cm)~1.5x10¹⁶cm⁻²
 - Present detectors can not sustain this fluence
- Linear Collider:
 - High doses of e- and γ !


What are Macroscopic effects at those fluences?

- Increase in Leakage current
 - I/Volume = $\alpha \phi_{eq}$
 - α~3x10⁻¹⁷ A/cm
 - RT: I/V~30mA/cm³ for φ=10¹⁵cm⁻²
- Deterioration of the charge collection efficiency
 - Dramatic deterioration for φ>10¹⁴cm⁻²


Data: Gianluigi Casse: 1st Workshop on Radiation hard semiconductor devices for high luminosity colliders; CERN; 28-30 November 2002

- Type Inversion, Change of the effective doping
 - n-type becomes effective p-type
 - Need to apply a greater voltage for full depletion

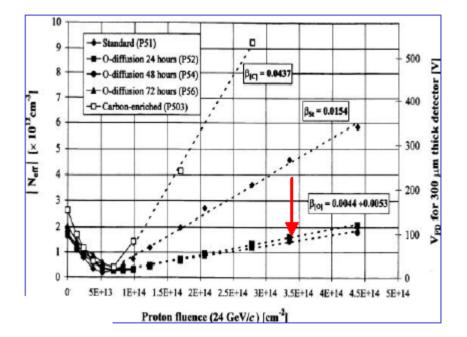
 Need Improvements in Radiation Hardness!

- Classification of Defects
 - Acceptor defect:
 - Negative when occupied by e-
 - Donor defect:
 - Neutral when occupied by e-
 - 1defect can have more than 1 level
 - Amphoteric defect:
 - Acceptor and donor levels
 - Actual charge state depends on Fermi level

→Typically: VO, C_iO: neutral B_s , P_s: -,+ space charge

Impact of defects on detector properties

- Leakage Current:
 - Defects close to middle of band-gap: generation centers
- Deterioration of charge collection efficiency:
 - Trapping: deep defects trap drifting e-h
 - If time for reemission > ro time \rightarrow loss of efficiency
 - Trapping probability ∞ :
 - Capture coeff. Of defects
 - Concentration of defects
 - Fraction of defects not occupied with e,h


Impact of defects on detector properties

- Type inversion, change of Vdep:
 - Initially: n, shallow donor, turns into p: many defects that act like acceptors
 - Vdep a |Neff|: effective doping concentration
 - Mobile defects that react with dopants \rightarrow changes Neff

Conclusion:

- Since defects react with impurities → need high purity in Si bulk
- OR: Defect Engineering!

- Example of Defect
 Engineering: DOFZ
 material
 - V₂ is likely charged
 - VO is likely neutral
 - V₂O is acceptor close to mid gap
 - \rightarrow hypothesis: more O leads to more VO than V₂ and V₂O ?
- Atlas and CMS pixels are using DOFZ Si!

Evidence for Oxygen Dimers

- Another Defect Engineering possibility:
 - Oxygen Dimers: O₂
- How could they help?
 - V₂O₂ and VO₂ : neutral
 - Vs V₂, VO, V₂O: could be charged
- How to create them?
 - V+O →VO
 - VO+O \rightarrow VO₂, V+VO₂ \rightarrow V₂O₂
 - $I+VO_2 \rightarrow O_2, V+O_2 \rightarrow VO_2$

Evidence for Oxygen Dimers

Lindstrom et.al.:

- Irradiation using fast electrons (E=2.5MeV)
- Samples:
 - n-Cz Si (P), 50Ωcm
 - Carbon-lean
 - High [O]~10¹⁸cm⁻³
- [O₂]=
 - Before: ~1x10¹⁵cm⁻³
 - After: ~5x10¹⁶cm⁻³>>[VO]
- E vs Co⁶⁰ or Cs¹³⁷:
 - Uniform I-V
 - V₂=V/50

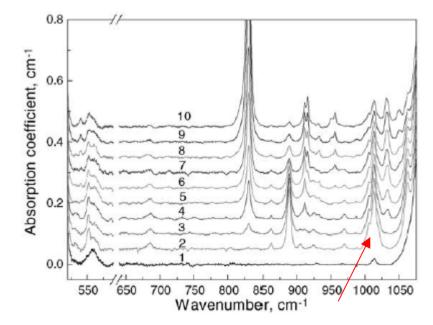


Fig. 1. Room temperature absorption spectra for C-lean n-Cz– Si ($\rho = 50 \Omega$ cm): (1) as-grown; (2) after electron irradiation at 350° C, $F = 8 \times 10^{17}$ cm⁻²; (3–10) after RT irradiation. F(cm⁻²): (3) 1×10^{16} , (4) 5×10^{16} , (5) 10^{17} , (6) 2×10^{17} , (7) 4×10^{17} , (8) 7×10^{17} , (9) 1.1×10^{18} , (10) 6×10^{18} .

- 1) Dimering Process:
 - Different samples: Cz, (DO)FZ
 - Use p+ as irradiation
 - But 2.5MeV 350C, F=8x10¹⁷e/cm² correspondence?
 - know 8.6x10¹³ 1 MeV e/cm² dose → 6x10¹² A-centers (Brotherton)
 - If $8x10^{17}e/cm2 \rightarrow 5.6x10^{16}$ A-centers
 - Know with protons 1 unit fluence \rightarrow 0.5 unit A-center
 - So need fluence of 1.12x10¹⁷ cm⁻² →400 days! (1day = 2.8x10¹⁴cm⁻²)
 - Wrong assumption: Temperature dependence

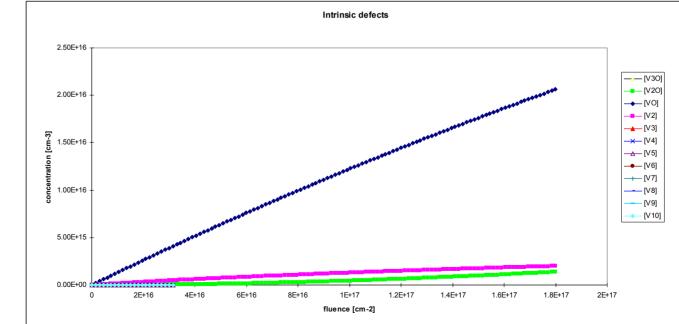
Simulations:

1st step: RT reactions:

V C_i I $I+C_s \rightarrow C_i$ $C_i + C_s \rightarrow CC$ $V+V_2 \rightarrow V_3$ $C_i + O \rightarrow CO$ $I+CC \rightarrow CCI$ $V+O \rightarrow VO$ I+CCI →CCII $V+VO \rightarrow V_2O$ I+CO →COI I+COI →COII $P(V,O) = \frac{R(V,O)[O]}{R(V,V_2)[V_2] + R(V,O)[O] + R(V,VO)[VO]}$ $I+V_2 \rightarrow V$ $I+VO \rightarrow O$

Assumptions:

- Damage process occur in increments:
 - 5x10¹¹ cm⁻³ V produced << [O]</p>
- At each increment [D]= $\eta_V f_i P$
- V₂ is primary defect not secondary
- All used every increment: V,I,V₂,C_i
- V gets updated: $V_i = \eta_V f_i + V_{i-1}$
- O and C get updated
- C_i mobile right away


Needed ingredients:

fluence

It works!

- Introduction rates: I,V,V₂
- All the trapping radius ratios

End result: Concentration of defects for a given

- 2nd step: Simulation at 350C
 - VO is moving! Additional reactions:

Ι	V	Ci	VO, VO2
$I+VO2 \rightarrow O2$	$V+VO2 \rightarrow V2O2$	Ci+VO2 →CsO2	$VO+O \rightarrow VO2$
I+O →IO	V+O2 →VO2		$VO2+O \rightarrow VO3$
I+IO →I2O	V+IO2 \rightarrow O2		
$I+O2 \rightarrow IO2$			
$I+IO2 \rightarrow I2O2$			

- 2) IR measurement of pre-irradiated sample
 - See which samples contain dimers!
- 3) get diodes, characterize them (resistivity, [],...), apply same dimering process
- 4)After dimering process make measurements:
 - CV/IV, DLTS, etc...
- 5)Proton irradiation
 - LHC+ fluence
 - Monitor depletion Voltage vs fluence
 - Various annealing procedures
 - DLTS, CV/IV, etc.

- Needed facilities:
 - p+ irradiation: CERN PS
 - γ irradiation: GIF
 - CV/IV: CERN
 - DLTS: possibly ISOLDE
 - IR: Lindstrom...

Conclusion

- Defect Engineering has a lot of potential in increasing the radiation hardness of Si sensors.
- A lot need to be understood:
 - Microscopic characterization
 - Standardization
- Oxygen Dimers carry a lot of potential
 - Might improve radiation hardness
 - Might shed light on microscopic processes