

EuroMedI m preparatory meeting CERN, 7-8 March 2003 - C. Joram, / CERN

Our collaboration has...

- Expertise and experience in development and construction of Si sensors and Hybrid Photon Detectors
- Expertise and experience in development of front-end electronics / data acquisition hardware

Motivation

We propose to apply some of the developed technologies to medical imaging, in particular to a high resolution (brain) PET system

<u>Goal</u>

We want to implement a novel geometrical concept which allows for a full 3D reconstruction, free of any parallax error. The concept allows to enhance the sensitivity by recovering also Compton scattered gammas.

HPD Principle

Developed and built @

Pad HPD 127mm Ø

EuroMedIm preparatory meeting CERN, 7-8 March 2003 - C. Joram, / CERN

The proposed PET concept

"Conventional" PET geometry

- Hit cell identified by charge ratio of PMTs.
- Limited detector thickness
- No DOI

Our new PET geometry

- Axial arrangement of individual long scint. Crystals
- Readout by <u>HPD</u>s on both sides.
- 1 crystal = 1 HPD channel

Main advantages of the concept

- Full 3D reconstruction of γ quanta without parallax error
 - x,y from silicon pixel address
 - z from amplitude signal ratio of the 2 HPD's
 - Precise Depth of Interaction DOI measurement
 - → No limitation in detector thickness → improved sensitivity.
- Measurement of light yield on both sides of crystals
- Negligible statistical fluctuations in HPD
 - \rightarrow Very good γ energy resolution
- 3D reconstruction provides possibility to recuperate part of γs which underwent Compton scattering in the detectors
 - Compton enhanced sensitivity

Scintillation crystals

- Criteria to be taken into account: light yield, absorption length, photo fraction, self absorption, decay time, availability, machinability, price.
- All preliminary performance estimates are based on YAP:Ce (availability!)

Density r (g/cm ³)	5.55	7.4	8.34	5.3
Effective atomic charge Z	34	66	65	46.9
Scintillation light output (photons / MeV)	18000	23000	≈ 10000	≈ 61000
Wavelength of max. emission (nm)	370	4 20	370	356
Refractive index n at max. emission	1.94	1.82	1.95	~ 1.88
Bulk light absorption length \boldsymbol{l}_a (cm)	14	20		
Principal decay time (ns)	27	40	38	30±5
γ attenuation length at 511 keV (mm)	22.4	11.5	10.5	11.8
Photofraction at 511 keV (%)	4.5 !	32.5	30.6	15
Energy resolution at 662 keV (FWHM, %)	4.5	8		2.9

YAP:Ce LSO:Ce LuAP:Ce LaBr₃:Ce

- YAP is OK for proof of principle, however suffers from low Z (high absorption length, low photo fraction)
- LaBr₃, LSO and LuAP are the really interesting candidates.

The crystal matrix

Compton enhanced reconstruction

Fine 3D segmentation and large volume make it possible...

- → Select only events in which Compton scattering happens in forward hemisphere
- → Restrict to Compton angle $10^\circ \le \theta \le 60^\circ$
- → Ask for energy deposit in first interaction $E \le 170 \text{ keV}$

PCR5 envelope assembled (Ø127 mm)

Ceramic body

1.8mm sapphire window

fabricated at CERN

EuroMedIm preparatory meeting CERN, 7-8 March 2003 - C. Joram, / CERN

