

Motivation

- Existing PET scanners are limited in resolution, sensitivity, rate. Limitations are partly due to
	- parallax error, no DOI information
	- modest energy resolution
	- coarse segmentation, low readout speed (no data spying during acquisition)
- Apply expertise and experience, gained in development of Si sensors and HPDs for particle physics (e.g. LHCb) to medical imaging
- Apply expertise and experience, gained in development of electronics / readout for particle physics, to the medical field in general

Outline

- Primer HPD principle, performance, fabrication
- The PET concept
- II Performance estimates
- III The PET HPD a round prototype
- IV Design of a rectangular HPD

Primer I: Hybrid Photodiode (HPD)

Developed and built @

Pad HPD 127mm Ø

Primer II: HPD performance

HPD combines single photon sensitivity of PMT with spatial and energy resolution of silicon sensor.

12

 \overline{Q} .

16 $\widehat{\mathcal{E}}^{20}$

24

28

32

Pad
Peer HPD

HPD PC87 (produced Easter Sunday 2001)

Sensitivity like classical PMTP

Primer III: HPD fabrication

Facilities and infrastructure for the fabrication of large HPDs (up to $10°\emptyset$) have been developed at CERN.

All ingredients for photodetector production are available:

- Design/simulation
- Photocathode processing (bialkali, Rb₂Te, Csl)
- Glass / ceramic tube manufacturing
- Indium sealing technique

I. The PET concept

Pad
HPD

"Conventional" PET geometry

- Axial arrangement of individual long scint. crystals
- Readout by HPDs on both sides.
- 1 crystal = 1 HPD channel

Main advantages of the concept

- Full 3D reconstruction of γ quanta without parallax error x,y from silicon pixel address,
	- z from amplitude ratio of the 2 HPD's
	- → Precise Depth of Interaction DOI measurement
- Measurement of light yield on both sides of crystals
- Negligible statistical fluctuations in HPD \rightarrow Good γ energy resolution
- Reduced random coincidence rate due to fine granularity
- 3D reconstruction provides possibility of recuperating part of γ 's which underwent Compton scattering in the detectors
	- \rightarrow Compton enhanced sensitivity

Critical issues of the concept

- How to obtain optimum z resolution ?
- How to arrange modules for very long (full body) scanners ?

The PET-HPD (details later) may also be interesting for a conventional PET geometry and other imaging applications.

Scintillation crystals

- Criteria to be taken into account: light yield, absorption length, photo fraction, self absorption, decay time, availability, machinability, price.
- All preliminary performance estimates are based on YAP:Ce (availability!)

YAP:Ce LSO:Ce LuAP:Ce LaCl₃ : Ce LaBr₃: Ce

- YAP is OK for proof of principle, however suffers from low Z (high absorption length, low photo fraction)
- LSO and LuAP are the really interesting candidates.

The crystal matrix

crystal size 3.2 x 3.2 mm

wires define precise spacing of crystals.

(Black paper for light shielding between crystals ?)

Light propagates by total internal reflection. No reflective coating.

Si pad size 4 x 4 mm

The photodetector – basic considerations

II. Performance estimates based on analytical calculations and M.C. simulations

scintillator: YAP:Ce

Ingredients of 'microscopic' simulation

- Isotropic generation of scintillation light
- Propagation by total internal reflection
- Refraction at refractive index change
- Loss due to refraction out of crystal
- Photon loss due to absorption
- Photon loss due to reflections $(R < 1)$
- HPD quantum efficiency
- HPD point spread function

Light Yield

- Number of generated photons per 511 keV γ: N_{ph} = 18.000 x 0.511 = 9200
- Number of reconstructed photons (for both HPDs together)

$$
N_{rec} = N_{ph} \cdot \mathbf{e}_C \cdot \mathbf{e}_Q \left(e^{-\frac{z_{eff}}{I_a}} + e^{-\frac{L - z_{eff}}{I_a}} \right)
$$

transport efficiency $\varepsilon_c \approx 0.4$ / side (rectangular crystals, n=1.94, $\lambda_{\text{abs}} = \infty$).

Quantum efficiency $\epsilon_{\text{Q}} \approx 0.25$ (bialkali PC at 370 nm)

Statistical contribution to energy resolution = 2.8 - 3% (sigma) or 6.5 - 7.1% (FWHM)

• Energy resolution

$$
R = \frac{\Delta E}{E} (FWHM) = R_{\text{Sci}} \oplus R_{\text{stat}} \oplus R_{\text{noise}}
$$
\n
$$
2.5 \text{ % negligible (discussed later)}
$$

$$
R_{_{stat}} \approx (6.5 - 7.1)\% \cdot \sqrt{\frac{511}{E_g(\text{keV})}}
$$

$$
R \approx 7 - 7.5\% \text{ (FWHM) at } E_{\gamma} = 511 \text{ keV}
$$

$$
\approx 16\% \text{ at } 100 \text{ keV}
$$

Photoelectron distribution on Si plane (1 crystal 'uniformly illuminated')

Polishing the crystal ends to a spherical lens plus small masks \rightarrow 97.5% of the light on central pad.

Not pursued for the moment.

- $L/2$ x-y: dimension of crystal determine precision 1 $S_x = S_y = \frac{1}{\sqrt{1.5}} s$ \approx 2.4 mm (FWHM) $s_x = s_y = \frac{1}{\sqrt{12}} s$ 100 80 z: ratio of light detected by the 2 HPDs 60 $\big($ \mathbf{C} $\big($ $\overline{}$ 1 *Q* I I *R* $z = -\frac{1}{2} \int L + k_a \cdot \mathbf{I}_a \cdot \log k$ $=\frac{1}{a} \int L + k_a \cdot \mathbf{I}_a$. *l* I I $g \left| \begin{array}{cc} a & \log \ a & \log \end{array} \right| Q$ 2 $\overline{\mathcal{K}}$ $\overline{1}$ $\overline{\mathcal{K}}$ $\overline{}$ 40 *L z* $k_{_o}=\big\langle \frac{ \overset{<}{\sim }_{\textit{eff}}}{ }$ $k_{_g}$ is a geometrical factor $\left|k_{_g}=\left<\frac{2\cdot e\cdot f}{\cdot}\right.\right> \approx 0.8$ 20 *g z* perfectly linear ! $\overline{20}$ 60 80 100 40° z gamma rec vs emission
- Reconstruction of the interaction point

z - resolution

Mattinata 5-7 September 2002 C. Joram, CERN

Verification of z – resolution in full simulation

emission at z = 50 mm, λ_a = 75 mm, E_γ = 511 keV

Electronics (encapsulated in HPD vacuum envelope)

IDEAS VaTagp3, 128 channels

Features: charge sensitive amplifier, shaper, sample+hold, multiplexed analogue readout, self-triggering logic (2 parallel shapers), sparse readout

Compton enhanced reconstruction

Problem: Photofraction in YAP:Ce (Z=32) is relatively low $e_{\rm g}^{\, photo}=4\%$ *g e*

- Compton scattering dominates, also in other materials.
- Can one use Compton scattered events ?
- Yes, but only if point of 1st interaction can be reconstructed.

Mattinata 5-7 September 2002 c. Joram, CERN Measured. Pad
HPD

 $e_{gg}^{photo}(coinc.) = 0.16\%$

Fine 3D segmentation and large volume make it possible…

- Select only events in which Compton scattering happens in forward hemisphere
- \rightarrow Restrict to Compton angle 10° $\leq \theta \leq 60$ °
- → Ask for energy deposit in first interaction E ≤ 170 keV

Geant4 LowEnergy

- Full microscopic simulation of low energy interaction in YAP and LSO
	- Photo effect (PE)
	- Compton effect (CE) (even Rayleigh scattering)

Unambiguous events: the photo-absorption takes place in a crystal 'after' the Compton interaction

III. The PET HPD

Round prototype "PCR5"

Body construction by ceramic / metal brazing technique (under vacuum). Technology available at CERN.

32 mm

52 mm

The HPD anode (round prototype)

- Base plate 5" (existing)
- Si sensor (2 independent halves) 8 x 13 pads each (208 total) pad size 4 x 4 mm²
- Ceramic PCB
- 2 VaTagp3 chips underneath Chips encapsulated in vacuum envelope

PET HPD round prototype "PCR5"

Electrostatic simulations of PCR5 with SIMION 7

 \P^{p}

 Π

Status of tube development (PCR5)

- All components designed
- Material ordered: Ceramic, sapphire, niobium
- material partly received, machining started
- First brazing tests of Ø 50mm body: ceramic/kovar, ceramic/Nb, Nb/sapphire No major problems.
- A first 5" body is expected to be produced in 1-2 months.
- First sealed tube with round Pad HPD Si sensor could be available by the end of the year.
- Si sensor design submitted for processing (SINTEF), ~12 weeks.

IV. towards an optimized PET HPD design …

rectangular prototype (very preliminary)

 $d = 1.3$ mm

Rectangular PET camera prototype module

Full ring scanner

Possible configuration for a Brain PET

- 34 cm inner diameter
- 10 cm axial length
- 2496 crystals
- 24 HPDs
- total detection volume 2556 cm³
- Φ coverage 66%
- Ω coverage 18%

Summary of performance estimates (for YAP:Ce crystals)

- Detected photoelectrons for a γ of 511 keV: 540 - 625 per HPD
- Energy resolution: $7 7.5 %$ (FWHM)
- Spatial resolution in $x y$: 2.4 mm (FWHM)
- Spatial resolution in z: 5.9 mm (FWHM)
- Coincidence interval: ~ 10 ns
- Compton gain: \sim 2
- Next steps
- Built first ceramic HPD prototypes
- Continue VATAGP performance tests
- Perform sophisticated simulation studies (EIDALON, H. Zaidi et al.)
- Get feedback from experts (also from industry)
- Hope for funding through FP6 (European union)
-
-
-