Summary of Workshop

23 Talks in 2 days:

- Thanks to the speakers for excellent presentations and content.
- Thanks to all participants for active discussions and questions.

Some personal reflections:

- 1) **Pre-LHC** \approx "garage operation" (up to a few m2)
 - "QC" = one/few persons, paper travellers, homemade DB

LHC (and beyond) ~ industrial operation (hundreds of m2)

"QC" = many distributed sites, automatic data entry, sophisticated DB

⇒ move to systems for quality management, need to tap Procedures, Tools, Knowledgebase of these systems

know what is behind acronyms: QM, QP, QA, QC, FMEA, RPN, ...

<u>BUT</u> ... how applicable to HEP experiments is it? \Rightarrow partially, we must learn and use as appropriate

In addition, more than just for sensors, for whole experiment.

ATLAS, CMS: already going in this direction.

2) Effectiveness of QA/QC relies on **FEEDBACK** (communications both within a collaboration and between collab. and industry)

Effectiveness of DB relies on <u>GETTING INFO OUT</u>

- 3) Experience of previous experiments (those finished with sensor production):
- Feedback with vendor essential, testing at vendor often a necessity
- Significant problems often unexpected (packaging, cleaning, ...), take care of small details
- Schedule often forced compromises in QC

• Double-sided sensors shown to work but single-sided easier to make, test, assemble (lesson taken by CMS, ATLAS)

 \Rightarrow very useful to share experience, should we not review results of LHC experiments after their sensor production for next meeting?

- 4) Encouraging to see at this workshop:
- New and continuing facilities for SI R&D
- Development of tools (both hardware and software) for research and testing
- Continued study (theory/phenomenology/experiment) toward understanding of silicon detectors