The Quality Assurance during the production of the ZEUS Micro Vertex Detector

Universität Hamburg

ZEUS MVD GROUP:

Bonn Univ., DESY-Hamburg, DESY-Zeuthen, Hamburg Univ., KEK-Japan, NIKHEF-Amsterdam, Oxford Univ., Padova, Torino, Bologna and Firenze Univ. INFN, UCL.

HERA Luminosity Upgrade

Increase instantaneous luminosity to

 $L = 7.5 \ 10^{31} \ cm^{-2} \ s^{-1}$ (now 1.5)

Expected to deliver ~ 150 pb⁻¹/year.

 \rightarrow higher sensitivity to low *ep* x-sections.

The ZEUS experiment has prepared a general upgrade of the tracking system: silicon Micro Vertex Detector (MVD) and Straw Tube Tracker (STT) close to the beam pipe.

<u>Aim:</u>

- identify 'long-lived' states ($c\tau \sim 300 \ \mu m$);
- reconstruct secondary vertices;
- extend detector acceptance in forward region (high Q² events);
- improve overall performances of the tracking system.

Superconducting magnets

A.Garfagnini – page 3

bunch crossing time: 96 ns

Requirements / design goals:

- good matching w/ existing tracking devices (fit into existing space → readout chip inside active area);
- long interaction range: $\sigma_z \sim 10$ cm;
- polar angle coverage 10° 160°;
- 3 spatial measurements, in two projection each, per track;
- 10 μm intrinsic hit resolution;
- operate for \geq 5 years (survive 3kGy w/o losses of performances);

A.Garfagnini – page 6

MVD layout

A.Garfagnini – page 7

MVD Wheel MVD ladder

BMVD half-module

- two detectors coupled and connected to FE electronics;
- small overlap between detectors → minimize dead areas;
- r- ϕ , r-z readout cells / module overall dimensions: $125 \times 64 \text{ mm}^2$

Si detector layout

- Single sided high resistivity diodes (Hamamatsu);
- 512 (480) readout strips, AC coupled, use charge division;
- biasing trough poly-Si resistors.

Electrical specifications of MVD detectors

Parameter		Specification	measured value	measured at
V _{Depletion}	depletion voltage	6095V	6070V	Detector
ρ_n	resistivity of n-material	36 kΩcm	5.3 k <u>Ω</u> cm	Detector
I _{leakage}	leakage current	<2µA @	20 nA 100 nA	Detector
		200V, 20°C		
R _{PolySi}	Biasing resistor	$1.5 \pm 0.5 M\Omega$	2.1 2.8 MΩ, ±0.02 MΩ	Test-structure
R _{p+}	p+-resistance	<150 kΩ/cm	100 k Ω /cm (interstr.)	Test-structure
			90 k Ω /cm (readout-str.)	
R _{A1}	Al-strip resistance	<20 <u>Ω</u> /cm	<20 <u>Ω</u> /cm	Test-structure
C _C	Coupling capacitance	>20 pF/cm	≈ 30 pF/cm	Detector/Test-
				structure
I _{Cc}	Max. leakage current through	<100 pA @	≤20 pA	Test-structure
	C _C	Vcc=60V		

A.Garfagnini - page 13

Single diode QA

Set of QA performed by producer (Hamamatsu):

C/V and I/V characteristics (BR and GR

separately);

- Checks of strip defects:
 - Broken Al lines;
 - Shorts strip-strip and p⁺-Al.
- Yield: 94% of detectors no strip errors, 6% have less than 0.4% of strip errors.

QA performed by the purchaser:

- Verification of technological parameters (test structures);
- Long Term Test of leakage current;
- shape measurements.

Damage by Probe Needles

Force exterted by probe needle ($\emptyset = 14 \ \mu m$) may produce damage 20 g prober force $\rightarrow 10 \ t/cm^2 \rightarrow 1 \ \mu m$ penetration depth

Single Diode Long Term Test

AIM: check stability of detectors over time.

- \rightarrow G.Barichello et al., CERN-EP/98-21
- detector under bias (200 V) for 24/48 h;
- measure current.

~1000 detector tested. Yield: 0.3%

A.Garfagnini – page 16

Half module assembly

Spacers

(1) spacers gluing

(2) Half Module gluing

• Alignment meas. • I/V meas. • shape meas.

Detector/Half module shape

Quite big detector \rightarrow surface not flat

Geometry further affected by spacers gluing. Deviations even bigger after HM gluing: need a 'seagull' jig.

BMVD868

Ladder geometry measured during HM assembly @ Nikhef→ input for reconstruction.

Spacer gluing / HM gluing

provide support for ladder and HM gluing;

- material: cirlex ® (CTE = 20 10⁻⁶ K⁻¹);
- glue: Epoxy (CTE = $60 \ 10^{-6} \ K^{-1}$);
- Si detector (CTE = $1.6 \ 10^{-6} \ K^{-1}$);

some spacers / glue cover the active detector area

 \rightarrow increase of dark current (5% of cases)

decrease of leakage current after heating

 \rightarrow heating (24 h @ 65°C) reduces the problem.

(3) Shipping to DESY-Zeuthen

(4) Upilex gluing

Outer half module

Inner half module

- visual inspection;
- alignment meas.

(5) Shipping to DESY-Hamburg

Produced @ CERN

(A.Gandi's workshop) Acceptance tests:

- visual scan
 - mask/cut errors;
 - missing gold (strip interruptions?)
 - quality of bond pads area;
- electrical measurements (R):
 - short between strips;

Upilex circuits

Upilex QA

Method:

- 1. measure C between strip and backplane;
- 2. measure shorts between strips (Ohm's law)

Upilex Acceptance criteria:

- short between strips ≤ 2 ;
- strip interruptions ≤ 1 ;
- no chemical remnant on bond pads.

strip numb.

Studies on Cu \rightarrow Au diffusion

Investigation of remnants/missing gold:

- electron microscope;
- plasma etching @ CERN improved the bondability of Upilex
- discussion w/ chemical bath producer;

Pull test for upilex bonds after heating at 100°C

(6) Half Module bonding

- I/V (before bonding);
- I/V (after bonding).
- HM Long Term Test of leakage current

(7) Hybrid gluing/bonding

Laser Test

Wire bonding

Need ~ 2000 bonds/half module

Full automatic machine : DELVOTEC 6400.

Measure the wire deformation while bonding: check bond quality. <u>Parameters</u>:

- wire thickness 17.5 μ m;
- bond force ~ 5 cN;
- loop height < 1 mm;</pre>

Half Module long term biasing

AIM:

check the stability in current of the half-module;
PROCEDURE:

 ✓ half-module is biased for a period of time (usually 5days, up to 1 month) and the current is measured regularly.

Laser Test

1st complete HM + readout chip test; Characterization of detector:

- shorts;
- broken channels;
- HELIX/hybrid problems Try to repair if possible.

Laser $\lambda = 904 \text{ nm} \rightarrow 25 \mu \text{m}$ penetration in Si. Accuracy of motors < 1 μm <u>Acceptance criteria:</u> • <= 2 shorts; • <= 2 dead channels Yield: 97 %

System test

Extensive QA program developed also for:

- ✓ readout Chip/Hybrid;
- ✓ ladder/wheel assembly;
- ✓ assembly of different components in MVD.

Full detector including readout chain and DAQ tested for 3-4 weeks before installation in ZEUS:

- →test/characterization of readout chips, bad/noisy modules;
- \rightarrow test of DAQ and Slow Control chains;
- →test of half-module currents long term stability;
- \rightarrow run with external cosmic μ trigger (tracking).

silicon detectors 330 micron thick

Effect of Inner HM bias Voltage on Outer HM Current

C1L03M4H1 1-636-574 Vdep 52.1 LTTcl 1 LTTiEnd 0.043

Temperature effect

Correlations between temperature and currents have been observed during the HM long term tests:

 Increase of currents observed when the temperature decreased (heating system switched OFF during weekend)

→ 0-0206-0208-B	—■ — 1-0209-0210-B
— <mark>—</mark> 1-0139-0140-В	→ 1-0142-0155-B

Measurements of I/V characteristics at different temperatures studied on few half-modules:

Setup: Closed box with temperature controlled wall. Temperature increased/lowered and measured for a long time until the system reaches the thermal equilibrium.

6-hours current test performed at two different values of the temperatures: the half-module current is stable at high temperature, but shows an increase with time at low temperatures

Conclusions

MVD design specifications fulfilled:

- charge division works, 10 μ m detector resolution;
- detector tested up to 3kGy: no degradation of performances.
- Very good quality half modules produced:
 - small # of dead channels / shorts (< 1‰);

Success due to extensive QA program (several acceptance tests).

MVD installed successfully in ZEUS, new cosmic run with all ZEUS components (2 weeks in July) planned before HERA startup:

- test of survival of MVD modules (bad/noisy modules characterization in the real environment);
- Use μ to test/develop tracking algorithms, check alignment to ZEUS components.