IV curves of different pixel cells

both pixels have identical pitch and length

—> equal volume generation currents expected

but wide gap pixel shows higher current !

surface effect ??

→ wide gap -> large surface area

small gap -> small surface area

Crucial growth parameters

goal : grow oxide films of well defined thickness and quality (low defect densities)

control oxidation rate

control ambient composition / contamination

radiation hardness depends on the process

water vapour

★ increases oxidation rate

high dopant surface concentrations (> 10¹9/cm²)

- dopants diffuse into oxide film or pile-up at crystal surface
- ★ increased oxidation rate
- ★ local variations in film thickness

crystal orientation

- ★ density of available bonds
- ★ activation energy depends on bonding angle
- ★ defect density

chlorine additives (HCI,TCA, TCE)

- ★ reduce mobile oxide charges
- ★ reduce stacking faults
- ★ lower defect densities
- increased minority carrier life-time at silicon surface (MOSFET)

3. Microscopic radiation effects

nomenclature

oxide bulk consists of stoichiometric silicon dioxide border region is characterised by high bond stress it extends over ~30 Angstroem high defect densities interface: transition region ~5 Angstroem thickness 3 layers of Si₂, Si₂O₂ and SiO₂ where do we stand ?

the process related data is often not accessible by the customer

- quality assurance during large scale production
- process monitoring
- monitoring of radiation hardness

set of macroscopic parameters required

4. Macroscopic surface parameters

CV curve of MOS devices

Hamburg, 20th December 2000

* contributing surface region must be well defined

* switch lox on and off to separate it from bulk contributions

use gate-controlled diode

- measure current through the diode
- by adjusting gate potential lox can be turned on and off
- outer gates accumulated to define region
 contributing surface region well defined

current measurements with gate -controlled diodes

measure capacitance of a MOS device versus gate voltage @ high frequencies

flat-band condition :

 $C_{si}(V_{fb}) = A_{gate} * \frac{\varepsilon_{ox} \varepsilon_{0}}{\lambda}$

 $\lambda\,$ extrinsic Debye length

find gate voltage corresponding to Cfb

Neff needed to determine flat-band voltage

(correction for serial resistors and stray capacitances may be necessary)

interface state density

- * use (for example) a combined high/low frequency CV measurement
 Csi — Cit
- equivalent circuit for very low frequencies

interface traps respond to "ac" gate voltage -> Cit (stretch-out)

minority carrier response

schematic drawing of a test-field (CERN2, APIX...)

cross-section

n⁺

the advanced test field provides current measurements as well as capacitance methods on the same device

more details in Wunstorf et al., NIM A444 (2000) 605-613

Results before irradiation

Hamburg, 20th December 2000

lox = 0.016 nA S0 = 7 cm/s

comparison of unirradiated devices

substrate / vendor	$N_{ox}[10^{11}/cm^2]$	$S_0[cm/s]$	$D_{it,mg}[10^{10}/eV/cm^2]$	$\sigma_{eff}[10^{-16}/cm^2]$
Polovodice, DOFZ Canberra	2.5	7.0	1.5	2.9
Topsil, <100>, DOFZ CiS	2.1	?	1.7	?
Topsil, <100>, Std. FZ CiS	2.1	8.0	0.9	5.6
Wacker, <111>, Std.FZ CiS	5.6	8.0	1.7	2.8
Wacker <111> 16h DOFZ CiS	5.6	7.6	1.7	2.8
Wacker <111> 24h DOFZ CiS	5.5	8.0	1.8	2.8
Wacker <111> Std.FZ IRST	3.9	<4.4	<1.1	2.5
Wacker <111> 24h DOFZ IRST	4.2	12.0	12.0	0.6
Topsil <111> 72h DOFZ Sintef	0.6	1.7	0.4	2.5
Wacker <111> 72h DOFZ Sintef	0.6	1.7	0.4	2.5
value calculated				

value calculated input for calculation

high quality oxidation

- effective capture cross-section in agreement with commonly used values
- the performance of <111> silicon is as good as for <100> crystals
 - no difference between DOFZ and Std.FZ !

a) current

Hamburg, 20th December 2000