Quality Assurance for the ATLAS Pixel Sensor

1st Workshop on Quality Assurance Issues in Silicon Detectors J. M. Klaiber-Lodewigs (Univ. Dortmund) for the ATLAS pixel collaboration

Contents:

- role of the pixel sensor
- overall QA concept
- measurement of bulk parameters
 - sensor breakdown time stability
 - sensor depletion
- radiation hardness
- cross calibration

1st Workshop on QA Issues in Si Detectors, May 2001, Genève

QA for the ATLAS Pixel Sensor, J. M. Klaiber-Lodewigs et al. - Univ. Dortmund

Introduction

Why systematic quality assurance for the ATLAS pixel detector?

• large number of detector parts (1718 modules fitted with one sensor tile and 16 front-end chips each)

• parts not easily accessible after assembly (central position, cooling and radiation)

• every bad pixel degrades performance

» 1.1.10⁸ pixel channels in total

Detector production

Development, production and QM

^{'st} Workshop on QA Issues in Si Detectors, May 2001, Genève

QA for the ATLAS Pixel Sensor, J. M. Klaiber-Lodewigs et al. - Univ. Dortmund

Pixel sensor design requirements

- pixel size 50µm x 400µm 50 µm pitch 12µm diameter bump connection
 total active area 1.8m² (1718 modules) high yield testability
 10 years operation fault tolerance
- harsh radiation environment

up to 10¹⁵ MeV n eq./cm² fluence and 500 kGy ion. dose

Development Strategy

Design studies

- performed within ATLAS
- prototype sensors concerning
 - isolation technique
 - design of the pixel cell

Studies on silicon

- performed within ROSE
- various Si impurities concerning
 - damage parameters
 - fabrication process

Radiation tolerant sensors

Sensor Concept

- n⁺-in-n pixel
- oxygenated Si substrate
- moderated p-spray isolation
- bias grid for testability
- 3 sensor tiles per wafer
- various test and monitor structures
- 2nd prototyping for yield optimization

Photo of prototype 2 wafer

Quality Assurance

Quality test plan for sensor production:

• I-V characteristics on every sensor before bonding, depletion measurement on every wafer

• process parameters on special test structures (e.g. p-spray dose)

• both at vendor and at institutes (acceptance tests) for better control

Flow of acceptance testing

Main measurement steps

^{'st} Workshop on QA Issues in Si Detectors, May 2001, Genève

QA for the ATLAS Pixel Sensor, J. M. Klaiber-Lodewigs et al. - Univ. Dortmund

Tests to perform

Grouped in topical order

	measurements	qualities tested
tile quality tests	visual inspection, I-V testing	visible damage, breakdown voltage
	<i>I-t testing</i>	time stability
wafer quality tests	visual insp., I-V on sensors, diodes and MOS, C-V on diodes and MOS, I-V _{gate} on GCD and MOSFET, planarity meas.	alignment, depletion voltage, oxide characteristics, p-spray dose, planarity
tests after dicing	thickness meas., I-V _{gate} on GCD, interpixel measurements, implantation meas.	thickness, bump bonding effects, interpixel resistance and capacitance, sheet resistances
tests after irradiation	<i>I-V on sensors and diodes,</i> <i>C-V on diodes,</i> <i>I-V_{gate} on GCD and MOSFET</i>	radiation hardness

Testing responsibilities

vendor • provides process data

• tests pixel quality on sensor tiles on wafer level

• performs diagnostic tests on wafer level for depletion, oxide quality and capacitance, and pspray dose ATLAS institutes

• check process data against measurements

• test pixel quality on sensors tiles, single chips and mini chips

• perform all diagnostic tests on wafer level and on diced test structures

• measure test structures after irradiating them

Breakdown & leakage current

I-V tests before bonding using bias grid

• punch-through effect across a bias grid allows testing of all pixels using only two probes on wafer p-side

^{'st} Workshop on QA Issues in Si Detectors, May 2001, Genève

Testability of pixel quality

I-V tests on test pixels using punch-through

Leakage current indicative for quality of every pixel

Breakdown & leakage current

Tile classification by pixel quality

^{'st} Workshop on QA Issues in Si Detectors, May 2001, Genève

Time stability

I-t tests at operation voltage

• I-t tests on tiles show if leakage current increases significantly over 15h

• similar tests could be done on mini sensor chips after irradiation

• long time burn-in could be done after assembly on module level

Measured at 150V bias

Sensor depletion

Diagnostic measurement by diode capacitance

• test diodes on production wafer for well defined capacitance measurements

• full depletion visible by levelling out of C vs. V^{-1/2} curve (suppression of possible constant stray capacitances)

^{'st} Workshop on QA Issues in Si Detectors, May 2001, Genève

QA for the ATLAS Pixel Sensor, J. M. Klaiber-Lodewigs et al. - Univ. Dortmund

Diode depletion vs. Sensor depletion

In unirradiated n⁺-in-n sensors, two 'depletion' cases are reached • pinch-off between neighbouring pixels by growing depletion zones from p-side and p-spray

• full depletion of whole sensor volume (as in diode)

Near full sensitivity at lower voltage

'Double depletion' in single chip sensor

3D-simulation of e⁻-concentration

QA for the ATLAS Pixel Sensor, J. M. Klaiber-Lodewigs et al. - Univ. Dortmund

17

^{'st} Workshop on QA Issues in Si Detectors, May 2001, Genève

Sensor depletion after irradiation

ATLAS scenario for 100 d beam, 3 d at 20°C, 14 d at 17°C p.a.(b-layer)

Radiation hardness tests

Oxygenation testing • after irrad. with 3.1 × 0¹⁴ MeV n eq./cm² protons Bulk damage testing • after irrad. with 10¹⁵ MeV n eq./cm² protons (design fluence) Surface damage testing • after irrad. with 500 kGray low energetic electrons (design dose)

• depletion measurement on diode

- I-V measurements on mini chip and diode (small structures)
- interface generation current measurement on GCD
- *p-spray measurement on MOSFET*

Testing for irradiation environment

Irradiation tests show so far: • irradiation with p of different energies and p⁺ show comparable results • irradiation in CO₂ and N₂ atmosphere cause no additional damage

Measured at $-30^{\circ}C$, normalized to $0^{\circ}C$

^{'st} Workshop on QA Issues in Si Detectors, May 2001, Genève

QA for the ATLAS Pixel Sensor, J. M. Klaiber-Lodewigs et al. - Univ. Dortmund

Calibration of measurement sites

Repeated tests on same dedicated structure:

• show stability of measurements at participating labs (influence of time or environment)

• can be used to test readiness for new testing period

I-V and C-V tests are used

16 I-V tests on diode

Cross calibration of measurement sites

Tests on same structures 5000 at different labs: • show comparability 4000 between labs 3000 • indicate possible problem [hA] 2000 sources (handling, transport, *humidity*, *set-up*) 1000 All tests used 0 50 20 30 40 **Currently ongoing** V[V]

5 I-V tests on sensor tile

70

QM for the ATLAS pixel sensor

- has been a dynamic process between different aspects of the project
- requires close collaboration for a long time period

QA procedures have required

- good understanding of the phenomena to be measured
- decisions on what exactly is crucial or worthwhile to know

QC measurements have, until now

- given us good tools for acceptance decisions
- ensured compatibility between different measurements / scenario and test

