" Cryogenic Operation of
Silicon Detectors

Luca Casagrande
CERN



©) Outline

S

e The” Lazarus effect”

e Operation at Cryogenic Temperatures

 First Application: the RD39/NA60 Beamscope
e Q& A Issues

e Conclusions

Luca Casagrande - CERN



) Radiation Damage in Si

— A

conduction band

 Radiation generates lattice displacements
o Defects appear asenergy levelsintheforbiddenbandgap — _

o | eakage current increases with dose —
- increase of noise valence band
- power dissipation in the sensor

e Trapping and de-trapping of carriers
- signal loss

v Fraction of defects are filled and therefore charged, so they contribute to
the effective doping concentration N,

» Under irradiation, space charge becomes more and more negative
- dramatic increase of depletion voltage (Vgg, 1 [N )
- signal loss

» Annealing: N changes also after irradiation
- need to keep the detector at -10°C
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CCE vs Temperature

e Experimental observation: heavily irradiated Si detector no
longer operational at room temperature “resuscitate” when
cooled down to cryogenic temperatures
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The Lazarus Effect

* There is no comprehensive model yet. ..
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By cooling, we manipulate the
S bulk properties

e Most relevant:
v charge carrier density
v [de-]trapping probability

 Cooling » fraction of charged
traps decreases
> |N;| decreases

Elena Verbitskaya et al., RD39 Coll. Meeting, March 2001.
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Leakage Current vs Temperature

Exponential Decrease of Leakage Current
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> No power dissipation in the sensor
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Forward Bias Operation

Forward Reverse
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What about Annealing?

RD39 data
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The CCE at cryogenic
temperatures does not
depend on the annealing
status of the detector

2 need to cool only during operation !!!
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200 K vs 130K

o Leakage current
- detector noise
- power In the sensor

» CCE (trapping + depletion)

reverse bias 3 10 n/cm?:
2 10>n/cm? :

forward bias

1" 10 n/cm? :

e Annealing:

2.8 104 n/cm? :

260 K 130 K

OK @ >10*n/cm? OK @ >10% n/cm?

~100mN/mm? ~1mMAN/mm?
65% @ 500V 100% @ 250V
0% 20% @ 250V

70% @ 50V
(I = 6mA / mm?)
70% @ 250V
(I <1nA /5 5mnv)
need to keep the cooling only

detector at -10°C during operation
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Don't be Afraid of
Operating a SI Detector
at Cryogenic Temperatures'!

Luca Casagrande - CERN



Cold Pixel Lasagna

RD19/WA97 LHC1 Pixel Detector

detector chip
7

I COIN
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500 i : 2

e CMOS 1nmm technology, 2048 cells, 50 © 500 nm?, 800 000 transistors
» Designed for RT operation, we managed to operateit at 77 K
80% of the channels OK
Averagethreshold: 7000 e @ 300K, 2500 e @ 77K
(also Alice2Test and APV 25, 0.25 nm technology)
» Several thermal cycles. wire-bonding, bump-bonding, etc. OK !
« Simple tests can be done by immersing into liquid nitrogen...
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Designing a Cryogenic Tracker

e More attention to the choice of all materials
(for example: thermal expansion of epoxy...)

e Important: cooling must be integrated into
mechanics design and should not be an add on
(always true...)

e Nature helps: Si thermal conductivity increases
with decreasing temperature
use Si as substrate: also matches the thermal
expansion of the detector...

e Two-phase nitrogen is an excellent coolant
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The first application:

Cryogenic Heavy lon

Beam Tracker for the
NAGO Experiment
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@) The NA60 Experiment
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e Study mm production in heavy ion collisions
 Signals related to phase transition from
hadronic matter to Quark-Gluon Plasma
e First measurement of charm production in heavy ion collision
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Charm Measurement in NA60O

Silicon Pixel Telescope

- offset - _'_’f}_'ﬁ _______ L] | | "

Need to measure the transverse coordinates of the
Interaction point

v Good position resolution: ~20 Mm
v Good timing: two-pulse resolution ~5ns
v Extreme radiation hardness: ~100 Grad
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The Cryogenic Module

Double-sided
glass-epoxy PCB

e Low mass cooling pipe (A= 1mm, 100mm thick)

e Integrated thermo-electrical design
v power layers are meshed - reduces
longitudinal conductivity
v patterning of ground layer = improves I
transverse conductivity

e 24 narrow strips
e Temperature between 80K and 300K by (50 nm pitch)
adjusting LN, flow and heater power e 2”4 wide strips

(500 nm pitch)
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NA60 Beamscope Test, Fall 2000

Exposed ~40 days to the 158 A GeV Pb beam
e Average beam intensity: 7° 10 7 ions per 4.5 s burst
e Total fluence: 52 “ 10 4 ions/cm? (90 + 40 Grad)
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Beam Profile

Day 1 Day 38 (~85 Grad)
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MHTR Timing & Cluster Correlation

Time of arrival wrt the trigger
of the hits in all strip integrated
over several spills, normalizing to

Correlation of clusters in plane 2

and 4 (only hits within 3 S)
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True (unshaped) Pb lon Signal

Non-irradiated

amplitude (mV)
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e Very fast rise time (< 500ps)
e Very long tail (~20ns)

After 20 days (40 + 20 Grad)

time (ns)

e Signal Is broader
« Amplitude ~20 times lower...
but we see it !
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The Beamscope After 90 Grad
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Pb beam’s sighature
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The Beamscope After 90 Grad
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&N Q&A Issues

Mechanical properties
v some defects may be tolerable at cryogenic temperatures

Electrical properties
v Leakage Current: suppressed at cryogenic T
(note: some nasty surface currents remains...)

T(K)
v Depletion Voltage: lower a cryogenic T m.,émlm w1 0
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= If detector isgood @ 300K » better @ 130K
bad @ 300K » may be good @ 130K
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v Strip quality: DC coupling can be used
- simpler detector processing
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1000/ T (K'H

= no special testing required for a cold tracker (except for bad detectors)
= higher yield
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Q&A Issues

RD39 data
S padsirradiated @ 83 K
with 450 GeV protons

~ Before irradiation ] ..
P S " - Irradiation tests
¢
S ”F/ 3 v for characterization is OK to
SIS + - Irradiate at RT and measure CCE
L 50 After 1.5x10" p/fem™ .
o In the cold
=1 ' » no need for annealing studies
o |
0 50 100 150 200
Bias voltage (V)

- Nno significant differences
compared to room temperature !
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Conclusions

Work to be done to understand the detail of the phenomenon.
Nevertheless, data clearly show that Cryogenic Operation is a
robust technique to extend the lifetime of Si trackers by more
than one order of magnitude

For heavy ions, where very large signals are obtained,
Cryogenic Silicon can work up to several tens of Grad

Thermal design for operation at 130 K is NOT more difficult
than that for -10°C

QA for a Cryogenic Tracker does not seem to require a more
complicated testing procedure

Future:
v Cryogenic Detectors for TOTEM
v Vertex Tracker of COMPASS
v Beamscope for NA6O
CERN-MIC developed a new CMOS readout chip
to work at 130 K to track the proton beam
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