

Cryogenic Operation of Silicon Detectors

- The "Lazarus effect"
- Operation at Cryogenic Temperatures
- First Application: the RD39/NA60 Beamscope
- Q&A Issues
- Conclusions

•

Radiation Damage in Si

Radiation generates lattice displacements Defects appear as energy levels in the forbidden band gap	conduction band	
Leakage current increases with dose		
 → increase of noise → power dissipation in the sensor 	valence band	

- Trapping and de-trapping of carriers
 - → signal loss
 - ✓ Fraction of defects are filled and therefore charged, so they contribute to the **effective doping concentration** N_{eff}
 - \checkmark Under irradiation, space charge becomes more and more negative
 - → dramatic increase of depletion voltage $(V_{dep} \mu | N_{eff} /)$
 - → signal loss
- Annealing: N_{eff} changes also after irradiation
 → need to keep the detector at -10°C

CCE vs Temperature

• Experimental observation: heavily irradiated Si detector no longer operational at room temperature "resuscitate" when cooled down to cryogenic temperatures

The Lazarus Effect

• There is no comprehensive model yet...

Elena Verbitskaya et al., RD39 Coll. Meeting, March 2001.

Leakage Current vs Temperature

Exponential Decrease of Leakage Current

Irradiated detector

→ no power dissipation in the sensor

Forward Bias Operation

 $300 \,\mu\text{m} + 10^{15} \,\text{n/cm}^2 @ 130 \,\text{K} @ 250 \,\text{V} P 15'000 \,e^{-10}$

What about Annealing?

260 K vs 130 K

		260 K	130 K
 Leakage curre → dete → pov 	ent ector noise ver in the sensor	OK @ >10 ¹⁴ n/cm ² ~100µW/mm ²	OK @ >10 ¹⁵ n/cm ² ~1 μ W/mm ²
• CCE (trapping reverse bias	g + depletion) $3 \times 10^{14} \text{ n/cm}^2$: $2 \times 10^{15} \text{ n/cm}^2$: $2.8 \times 10^{14} \text{ n/cm}^2$: $1 \times 10^{15} \text{ n/cm}^2$:	65% @ 500V 0% 70% @ 50V (I = 6µA / mm ²)	100% @ 250V 20% @ 250V 70% @ 250V (I < 1nA / 5×5mm ²)
• Annealing:		need to keep the detector at -10°C	cooling only during operation

Don't be Afraid of Operating a Si Detector at Cryogenic Temperatures !

Cold Pixel Lasagna

RD19/WA97 LHC1 Pixel Detector

- CMOS 1µm technology, 2048 cells, $50\times500~\mu m^2$, 800 000 transistors
- Designed for RT operation, we managed to operate it at 77 K 80% of the channels OK Average threshold: 7000 e⁻ @ 300K, 2500 e⁻ @ 77K
- (also Alice2Test and APV25, 0.25 μm technology)
- Several thermal cycles: wire-bonding, bump-bonding, etc. OK !
- Simple tests can be done by immersing into liquid nitrogen...

- More attention to the choice of all materials (for example: thermal expansion of epoxy...)
- Important: cooling must be integrated into mechanics design and should not be an add on (always true...)
- Nature helps: Si thermal conductivity increases with decreasing temperature use Si as substrate: also matches the thermal expansion of the detector...
- Two-phase nitrogen is an excellent coolant

The first application: Cryogenic Heavy Ion Beam Tracker for the NA60 Experiment

The NA60 Experiment

- Study μ⁺μ⁻ production in heavy ion collisions
- Signals related to phase transition from hadronic matter to Quark-Gluon Plasma
- First measurement of charm production in heavy ion collision

Need to measure the transverse coordinates of the interaction point

- ✓ Good position resolution: ~20 µm
- Good timing: two-pulse resolution
- Extreme radiation hardness:
- ~100 Grad

~ 5 ns

The Cryogenic Module

- Low mass cooling pipe ($\mathbf{I} = 1$ mm, 100 μ m thick)
- Integrated thermo-electrical design
 ✓ power layers are meshed → reduces
 Iongitudinal conductivity
 - ✓ patterning of ground layer → improves
 transverse conductivity
- Temperature between 80K and 300K by adjusting ${\rm LN_2}$ flow and heater power

Double-sided glass-epoxy PCB

24 narrow strips (50 mm pitch)
2 '4 wide strips (500 mm pitch)

NA60 Beamscope Test, Fall 2000

Exposed ~40 days to the 158 A GeV Pb beam

- Average beam intensity: 7¹⁰ ions per 4.5 s burst
- Total fluence: 5±2 ´10¹⁴ ions/cm² (90 ± 40 Grad)

Beam Profile

MHTR Timing & Cluster Correlation

True (unshaped) Pb Ion Signal

Non-irradiated

- Very fast rise time (< 500ps)
- Very long tail (~20ns)

After 20 days (40 ± 20 Grad)

- Signal is broader
- Amplitude ~20 times lower... but we see it !

The Beamscope After 90 Grad

The Beamscope After 90 Grad

Q&A Issues

Mechanical properties

✓ some defects may be tolerable at cryogenic temperatures

Electrical properties

✓ Leakage Current: suppressed at cryogenic T

(note: some nasty surface currents remains...)

✓ Depletion Voltage: lower at cryogenic T

⇒ if detector is good @ 300K → better @ 130K bad @ 300K → may be good @ 130K

✓ Strip quality: DC coupling can be used
 → simpler detector processing

no special testing required for a cold tracker (except for bad detectors)
 higher yield

Q&A Issues

RD39 data Si pads irradiated @ 83 K with 450 GeV protons

→ no significant differences compared to room temperature !

Irradiation tests

- ✓ for characterization is OK to irradiate at RT and measure CCE in the cold
- ✓ no need for annealing studies

- Work to be done to understand the detail of the phenomenon. Nevertheless, data clearly show that Cryogenic Operation is a robust technique to extend the lifetime of Si trackers by more than one order of magnitude
- For heavy ions, where very large signals are obtained, Cryogenic Silicon can work up to several tens of Grad
- Thermal design for operation at 130 K is NOT more difficult than that for -10°C
- QA for a Cryogenic Tracker does not seem to require a more complicated testing procedure
- Future:
 - ✓ Cryogenic Detectors for TOTEM
 - ✓ Vertex Tracker of COMPASS
 - ✓ Beamscope for NA60

CERN-MIC developed a new CMOS readout chip to work at 130 K to track the proton beam