Quality Control I ssues in CDF Silicon

Steve Worm University of New Mexico / CDF

For the CDF Silicon Groups May 17, 2001

Outline

- CDF Silicon Overview
- Sensor Testing -- Plans vs Actual
 - Testing Reproducibility
 - Interstrip resistance
 - Leakage currents
- Schedule Details
 - Testing Rates
 - Throughput and QA Issues
- Hamamatsu vs Micron
- Final Words

CDF Silicon Collaborations

SVX II Collaboration

ISL Collaboration

LOO Collaboration

Academia Sinica, Taiwan Fermilab Harvard University Hiroshima University Johns Hopkins LBNL University of New Mexico **INFN-Padova** U. Pittsburgh **Purdue University** U. Rochester **Rutgers University** Texas A&M University Texas Tech University **Toronto University** Yale University

Fermilab INFN-Pisa INFN-Padova INFN-Bologna LBNL Texas A&M U. California-Davis U. California-Los Angeles U. Cassino U. Florida U. Florida U. Karlsruhe U. Rochester U. Tsukuba Osaka City University University of California-Davis Fermilab University of Florida University of Glasgow University of Liverpool INFN-Pisa INFN-Padova Lawrence Berkeley Lab Purdue University

CDF Silicon QA, 5/17/01

Fermilab Run II Silicon

			1113					-	
		atta		DØ		6 Barrels	F Disks	H Disks	Totals
					ers/planes	4	12	4	
				Δz Channels		77 cm	48 cm	10 cm	
						387120	258000	147456	792576
				Modules		432	144	192	768
				Rea	dout Length	12 cm	7.5 cm	14.9 cm	
				Inne	er Radius	2.7 cm	2.6 cm	9.5 cm	2.6 cm
				Oute	er Radius	9.4 cm	10.5 cm	26 cm	26 cm
Lavers	1	5	2		8	4	HD &		
CDE	Laver 00	SVX II	ISI		Totals	7	100	REG	Layer 00
Layers	1 0.0 m	5 0.0 m	2		0	- 1		<u>a</u>	
Length	0.9 M	0.9 M	1.9 m						
Channels	13824	405504	303104	ł	722432) D			
Modules	40.00	000 00							
moduloo	48 55	360 DS	296 DS	5	704	ISL		S	
Readout Length	48 SS 14.8 cm	360 DS 14.5 cm	296 DS 21.5 cn	s n	704	ISL		Y,	
Readout Length Inner Radius	48 SS 14.8 cm 1.35 cm	360 DS 14.5 cm 2.5 cm	296 DS 21.5 cn 20 cm	n	704 1.35 cm	ISL			
Readout Length Inner Radius Outer Radius	48 SS 14.8 cm 1.35 cm 1.65 cm	360 DS 14.5 cm 2.5 cm 10.6 cm	296 DS 21.5 cn 20 cm 28 cm	n	704 1.35 cm 28 cm	ISL			
Readout Length Inner Radius Outer Radius Power	48 SS 14.8 cm 1.35 cm 1.65 cm ~100 W	360 DS 14.5 cm 2.5 cm 10.6 cm 1.4 kW	296 DS 21.5 cm 20 cm 28 cm 1.0 kW	3 n	704 1.35 cm 28 cm 1.5 kW	ISL			SVXII

CDF Silicon QA, 5/17/01

CDF Silicon: Layer 00 + SVXII + ISL

CDF Silicon QA, 5/17/01

Goals and Features:

- Precise 3D track impact parameters
 - B tagging: top, SUSY, Higgs
 - B Physics
- I mproved forward coverage
 - $0 \leq \left| \eta \right| \leq 2$
- Level II displaced-track trigger (SVT)
 - Hadronic B decays
 - Calibration triggers
- I mproved p_T resolution
- High tracking efficiency
 with good purity

Silicon Strip Sensor (Micron SVXII SAS)

CDF Silicon QA, 5/17/01

SVXII Testing Plans (circa 1997)

- Original plan was to use vendor measure as baseline
 - Sensor costs included extensive vendor testing
 - Prototypes extensively studied to verify vendor testing
 - Vendor measured IV, coupling capacitors (on sensor) and CV (test structure)
- University groups to re-measure all sensors IV, CV and inspect
- University groups planned to retest 10-15% of the sensors in detail
 - Complete measure of sensor IV, CV
 - Coupling capacitance
 - Interstrip resistance

Found good agreement between vendors and University groups for prototypes.

But... initial production deliveries had significant problems...

CDF Silicon QA, 5/17/01

SVXII Testing Plans (Revised)

- Added DC test of each strip for both vendors because of interstrip resistance problems.
 - Problems often never completely understood
 - No other test was sensitive to these problems
 - Many processing problems can lead to poor isolation
- Significant number of leaky strips found.
- Result is a greatly increased testing load at the Vendors
 - DC tests often take a long time; perhaps 2 hours or more
 - Testing load nearly doubles as a result

Net result was to abandon University-based testing and to work more closely with the vendors to solve processing problems *before* the sensors were delivered.

Still, each device was tested, and Fermilab's "SiDet" played the key role.

CDF Silicon QA, 5/17/01

Testing Reproducibility

- Measurements were compared between several University testing groups and with the vendors
 - Most problems, such as differences in meters or methods, were explained
 - Differences in testing experience were more significant
 - 1. Newer testing sites had more trouble
 - 2. Undergraduate labor can be a source of uncertainty
 - With care, remarkably consistent measurements can be made at remote sites
- From comparison among university sites and remeasurement at the vendor, we estimated the expected level of disagreement
 - Includes both probing disagreement and accumulated ESD and handling degradation
 - More than half the data is from remeasurement of devices at Hamamatsu which had significant extra handling number is probably an overestimate

 \leq 0.18% disagreement that lead to bonds being pulled; so \leq 2 bonds in 1000 strips

CDF Silicon QA, 5/17/01

Interstrip Resistance

- Many factors lead to isolation problems for CDF
 - Hamamatsu mobile ionic contaminant
 - Micron change in cutting film results in poor isolation (localized contaminanat)
 - Micron process variations and possibly bulk Si
- Test for R_{int} necessitates DC pad probing

CDF Silicon QA, 5/17/01

Leaky Strips

- Process defects (and poor handling, cleaning) lead to leaky strips
- Hamamatsu
 - DC shorts seen from scratches during processing
 - Surface scratches (a major problem)
- Micron
 - Lack of cleanliness in the cleanroom drove the generation of leaky strips early on
 - Specification changed to have strips with > 100 nA counted as bad.

CDF Silicon QA, 5/17/01

Diff-I solation Faults

- Micron Photolithography faults between n implant and p-stop
 - Ramp-up of 150 mm production allowed non-optimal (bad) photolithogrgraphy
 - Photoresist surface drying allowed solvent to be trapped (oven, not hot plate)
 - Trapped solvent during exposure led to semi-circular defects near the edges of the p-stops that created one very leaky strip
 - Small angle stereo, plus isolated p-stops, yielded a region of leaky strips on the p-side.

This problem forced significant retesting of all devices from Micron.

Subsequently, working closely with Micron allowed us to see, predict, and fix problems before they reached us.

CDF Silicon QA, 5/17/01

Scratches (SVXII)

- CDF SVXII readout hybrids are glued directly to the silicon
 - Epoxy used does not affect sensor if passivation is intact
 - Scratches present on sensors from both vendors
 - Some process flaws also
- Inspection and coating of scratches on every sensor was necessary
 - Very labor intensive (~1 man year)
 - Coating conducted at Fermilab
 - UV cure epoxy (Norland)
- Hamamatsu sensors
 - About 75% needed coating
 - 3.0 or 0.7 µm passivation
- Micron sensors
 - Only about 20% required coating
 - 0.2 to 0.3 µm passivation (LPCVD SiO₂)

Test (SDX33502-8-0)	Strip current
I nitial value	~0.4 nA
After scratch	~0.4 nA
Epoxy near scratch	1.1 nA
Epoxy in scratch	> 40 nA
After epoxy cure	> 40 nA

Process Defects and Scratches

CDF Silicon QA, 5/17/01

Hamamatsu Deliveries

- Hamamatsu deliveries were temporarily suspended after interstrip problems identified
 - Hamamatsu sensor production is highly automated; they had little time or manpower to debug complicated problems
 - As a result of problems, CDF lost it's place in the production pipeline
 - No increase in production rate was possible once production resumed
- Maintaining a higher level of communication and testing feedback improved the situation
 - 1. Sensor testing established in Hiroshima for faster turn-around
 - 2. Frequent communication established

Wafer Inspections and Pipeline Monitoring

- Monitoring the production pipeline is very important
 - With a ~4 month production pipeline, deliveries can be predicted
 - For Micron, it helped us understand and predict persistent problems in photolithography (as well as throughput)
 - Weekly reports of wafer throughput allowed better planning downstream
- Quality assurance should not consist of just a final test

CDF Silicon QA, 5/17/01

Sample Vendor Data

Hamamatsu

CDF Silicon QA, 5/17/01

IV vs Bad Strips, Hamamatsu vs Micron

- QA needs can vary between vendors, even with similar specifications
 - 1. Hamamatsu is highly automated; very little rework
 - Our Micron sensors were 'handcrafted'; 14 mask steps and maybe 6 more rework
- Our two vendors were very different; we found that the methods to monitor QA needed to adapt to each vendor

Conclusions

- Given our time constraints, farming out production testing to many different locations was a bad idea.
 - Production testing needed to be accomplished as quickly and as closely to the vendor as possible.
 - Feedback needed to be immediate, and the production pipeline needed to be closely monitored.
 - Having many different sites makes for logistical and data-sharing difficulties.
- Different vendors require different methods, but working closely with the vendors is very important.
- QA for CDF was not a simple comparison with specifications; we needed to go a little deeper to understand the problems and of have some flexibility to adapt to the devices being produced.

CDF Silicon QA, 5/17/01